Cargando…
A single-atom 3D sub-attonewton force sensor
Forces drive all physical interactions. High-sensitivity measurement of the effect of forces enables the quantitative investigation of physical phenomena. Laser-cooled trapped atomic ions are a well-controlled quantum system whose low mass, strong Coulomb interaction, and readily detectable fluoresc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938223/ https://www.ncbi.nlm.nih.gov/pubmed/29740598 http://dx.doi.org/10.1126/sciadv.aao4453 |
_version_ | 1783320743728119808 |
---|---|
author | Blūms, Valdis Piotrowski, Marcin Hussain, Mahmood I. Norton, Benjamin G. Connell, Steven C. Gensemer, Stephen Lobino, Mirko Streed, Erik W. |
author_facet | Blūms, Valdis Piotrowski, Marcin Hussain, Mahmood I. Norton, Benjamin G. Connell, Steven C. Gensemer, Stephen Lobino, Mirko Streed, Erik W. |
author_sort | Blūms, Valdis |
collection | PubMed |
description | Forces drive all physical interactions. High-sensitivity measurement of the effect of forces enables the quantitative investigation of physical phenomena. Laser-cooled trapped atomic ions are a well-controlled quantum system whose low mass, strong Coulomb interaction, and readily detectable fluorescence signal make them a favorable platform for precision metrology. We demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on a super-resolution imaging of a single trapped ion. The force is detected by measuring the ion’s displacement in three dimensions with nanometer precision. Observed sensitivities were 372 ± 9, 347 ± 18, and 808 ± 51 zN/ [Formula: see text] , corresponding to 24×, 87×, and 21× above the quantum limit. We verified this technique by measuring a 95-zN light pressure force, an important systematic effect in optically based sensors. |
format | Online Article Text |
id | pubmed-5938223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59382232018-05-08 A single-atom 3D sub-attonewton force sensor Blūms, Valdis Piotrowski, Marcin Hussain, Mahmood I. Norton, Benjamin G. Connell, Steven C. Gensemer, Stephen Lobino, Mirko Streed, Erik W. Sci Adv Research Articles Forces drive all physical interactions. High-sensitivity measurement of the effect of forces enables the quantitative investigation of physical phenomena. Laser-cooled trapped atomic ions are a well-controlled quantum system whose low mass, strong Coulomb interaction, and readily detectable fluorescence signal make them a favorable platform for precision metrology. We demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on a super-resolution imaging of a single trapped ion. The force is detected by measuring the ion’s displacement in three dimensions with nanometer precision. Observed sensitivities were 372 ± 9, 347 ± 18, and 808 ± 51 zN/ [Formula: see text] , corresponding to 24×, 87×, and 21× above the quantum limit. We verified this technique by measuring a 95-zN light pressure force, an important systematic effect in optically based sensors. American Association for the Advancement of Science 2018-03-23 /pmc/articles/PMC5938223/ /pubmed/29740598 http://dx.doi.org/10.1126/sciadv.aao4453 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Blūms, Valdis Piotrowski, Marcin Hussain, Mahmood I. Norton, Benjamin G. Connell, Steven C. Gensemer, Stephen Lobino, Mirko Streed, Erik W. A single-atom 3D sub-attonewton force sensor |
title | A single-atom 3D sub-attonewton force sensor |
title_full | A single-atom 3D sub-attonewton force sensor |
title_fullStr | A single-atom 3D sub-attonewton force sensor |
title_full_unstemmed | A single-atom 3D sub-attonewton force sensor |
title_short | A single-atom 3D sub-attonewton force sensor |
title_sort | single-atom 3d sub-attonewton force sensor |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938223/ https://www.ncbi.nlm.nih.gov/pubmed/29740598 http://dx.doi.org/10.1126/sciadv.aao4453 |
work_keys_str_mv | AT blumsvaldis asingleatom3dsubattonewtonforcesensor AT piotrowskimarcin asingleatom3dsubattonewtonforcesensor AT hussainmahmoodi asingleatom3dsubattonewtonforcesensor AT nortonbenjaming asingleatom3dsubattonewtonforcesensor AT connellstevenc asingleatom3dsubattonewtonforcesensor AT gensemerstephen asingleatom3dsubattonewtonforcesensor AT lobinomirko asingleatom3dsubattonewtonforcesensor AT streederikw asingleatom3dsubattonewtonforcesensor AT blumsvaldis singleatom3dsubattonewtonforcesensor AT piotrowskimarcin singleatom3dsubattonewtonforcesensor AT hussainmahmoodi singleatom3dsubattonewtonforcesensor AT nortonbenjaming singleatom3dsubattonewtonforcesensor AT connellstevenc singleatom3dsubattonewtonforcesensor AT gensemerstephen singleatom3dsubattonewtonforcesensor AT lobinomirko singleatom3dsubattonewtonforcesensor AT streederikw singleatom3dsubattonewtonforcesensor |