Cargando…
Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices
The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938360/ https://www.ncbi.nlm.nih.gov/pubmed/29765371 http://dx.doi.org/10.3389/fmicb.2018.00871 |
_version_ | 1783320765453565952 |
---|---|
author | Yang, Da Jennings, Anna D. Borrego, Evalynn Retterer, Scott T. Männik, Jaan |
author_facet | Yang, Da Jennings, Anna D. Borrego, Evalynn Retterer, Scott T. Männik, Jaan |
author_sort | Yang, Da |
collection | PubMed |
description | The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquid culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels. |
format | Online Article Text |
id | pubmed-5938360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59383602018-05-14 Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices Yang, Da Jennings, Anna D. Borrego, Evalynn Retterer, Scott T. Männik, Jaan Front Microbiol Microbiology The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquid culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels. Frontiers Media S.A. 2018-05-01 /pmc/articles/PMC5938360/ /pubmed/29765371 http://dx.doi.org/10.3389/fmicb.2018.00871 Text en Copyright © 2018 Yang, Jennings, Borrego, Retterer and Männik. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Yang, Da Jennings, Anna D. Borrego, Evalynn Retterer, Scott T. Männik, Jaan Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices |
title | Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices |
title_full | Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices |
title_fullStr | Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices |
title_full_unstemmed | Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices |
title_short | Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices |
title_sort | analysis of factors limiting bacterial growth in pdms mother machine devices |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938360/ https://www.ncbi.nlm.nih.gov/pubmed/29765371 http://dx.doi.org/10.3389/fmicb.2018.00871 |
work_keys_str_mv | AT yangda analysisoffactorslimitingbacterialgrowthinpdmsmothermachinedevices AT jenningsannad analysisoffactorslimitingbacterialgrowthinpdmsmothermachinedevices AT borregoevalynn analysisoffactorslimitingbacterialgrowthinpdmsmothermachinedevices AT rettererscottt analysisoffactorslimitingbacterialgrowthinpdmsmothermachinedevices AT mannikjaan analysisoffactorslimitingbacterialgrowthinpdmsmothermachinedevices |