Cargando…
Diversity and distribution of parasitic angiosperms in China
Parasitic plants are an important component of vegetation worldwide, but their diversity and distribution in China have not been systematically reported. This study aimed to (1) explore floral characteristics of China's parasitic plants, (2) map spatial distribution of diversity of these specie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938475/ https://www.ncbi.nlm.nih.gov/pubmed/29760880 http://dx.doi.org/10.1002/ece3.3992 |
Sumario: | Parasitic plants are an important component of vegetation worldwide, but their diversity and distribution in China have not been systematically reported. This study aimed to (1) explore floral characteristics of China's parasitic plants, (2) map spatial distribution of diversity of these species, and (3) explore factors influencing the distribution pattern. We compiled a nationwide species list of parasitic plants in China, and for each species, we recorded its phylogeny, endemism, and life form (e.g., herb vs. shrub; hemiparasite vs. holoparasite). Species richness and area‐corrected species richness were calculated for 28 provinces, covering 98.89% of China's terrestrial area. Regression analyses were performed to determine relationships between provincial area‐corrected species richness of parasitic plants and provincial total species richness (including nonparasitic plants) and physical settings (altitude, midlongitude, and midlatitude). A total of 678 species of parasitic angiosperms are recorded in China, 63.13% of which are endemic. Of the total, 59.73% (405 species) are perennials, followed by shrubs/subshrubs (14.75%) and vines (1.47%). About 76.11% (516 species) are of root hemiparasites, higher than that of stem parasites (100, 14.75%), root holoparasites (9.00%), and endophytic parasites (0.15%). A significant positive relationship is found between the area‐corrected species richness and the total species richness, which has been previously demonstrated to increase with decreasing longitude and latitude. Moreover, more parasitic species are found in the southwest high‐altitude areas than low areas. Consistently, the area‐corrected species richness increases with increasing altitude, decreasing latitude, and decreasing longitude, as indicated by regression analyses. China is rich in parasitic flora with a high proportion of endemic species. Perennials and root hemiparasites are the dominant types. The spatial distribution of parasitic plants is largely heterogeneous, with more species living in southwest China, similar to the distribution pattern of Chinese angiosperms. The positive relationship between parasitic and nonparasitic plant species richness should be addressed in the future. |
---|