Cargando…
MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma
MicroRNAs (miRNAs) have been widely reported to have important regulatory roles in various human tumors, including osteosarcoma (OS). The aim of this study was to focus on the role of less well-known miRNA-567 (miR-567) in OS. We found the expression of miR-567 was significantly reduced in OS tissue...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938541/ https://www.ncbi.nlm.nih.gov/pubmed/29743851 http://dx.doi.org/10.17179/excli2017-932 |
_version_ | 1783320805242830848 |
---|---|
author | Liu, Daodong Zhang, Chaoju Li, Xiaolin Zhang, Hongmei Pang, Qixiong Wan, An |
author_facet | Liu, Daodong Zhang, Chaoju Li, Xiaolin Zhang, Hongmei Pang, Qixiong Wan, An |
author_sort | Liu, Daodong |
collection | PubMed |
description | MicroRNAs (miRNAs) have been widely reported to have important regulatory roles in various human tumors, including osteosarcoma (OS). The aim of this study was to focus on the role of less well-known miRNA-567 (miR-567) in OS. We found the expression of miR-567 was significantly reduced in OS tissues and cell lines (MG-63, U2OS and Saos-2) compared with the adjacent normal tissues and normal osteoblastic cells (hFOB), respectively. Moreover, exogenous miR-567 overexpression inhibited OS cell proliferation, migration and invasion by CCK-8, Transwell assays, respectively. We further explored the mechanism underlying the suppressive effects of miR-567 on OS cells and identified a potential target of miR-567 binds to the 3'UTR of fibroblast growth factor 5 (FGF5) using TargetScan program. Furthermore, enforced expression of miR-567 decreased the expression of FGF5 in both MG-63 and U2OS cells using luciferase reporter assay and Western blotting. We also showed that overexpression of FGF5 could partially antagonize the suppressive effects of miR-567 on OS cell proliferation, migration and invasion. Taken together, our data indicated that miR-567 may function as a tumor suppressor by negatively regulating FGF5 and be potential therapeutic targets for the treatment of OS. |
format | Online Article Text |
id | pubmed-5938541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Leibniz Research Centre for Working Environment and Human Factors |
record_format | MEDLINE/PubMed |
spelling | pubmed-59385412018-05-09 MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma Liu, Daodong Zhang, Chaoju Li, Xiaolin Zhang, Hongmei Pang, Qixiong Wan, An EXCLI J Original Article MicroRNAs (miRNAs) have been widely reported to have important regulatory roles in various human tumors, including osteosarcoma (OS). The aim of this study was to focus on the role of less well-known miRNA-567 (miR-567) in OS. We found the expression of miR-567 was significantly reduced in OS tissues and cell lines (MG-63, U2OS and Saos-2) compared with the adjacent normal tissues and normal osteoblastic cells (hFOB), respectively. Moreover, exogenous miR-567 overexpression inhibited OS cell proliferation, migration and invasion by CCK-8, Transwell assays, respectively. We further explored the mechanism underlying the suppressive effects of miR-567 on OS cells and identified a potential target of miR-567 binds to the 3'UTR of fibroblast growth factor 5 (FGF5) using TargetScan program. Furthermore, enforced expression of miR-567 decreased the expression of FGF5 in both MG-63 and U2OS cells using luciferase reporter assay and Western blotting. We also showed that overexpression of FGF5 could partially antagonize the suppressive effects of miR-567 on OS cell proliferation, migration and invasion. Taken together, our data indicated that miR-567 may function as a tumor suppressor by negatively regulating FGF5 and be potential therapeutic targets for the treatment of OS. Leibniz Research Centre for Working Environment and Human Factors 2018-01-15 /pmc/articles/PMC5938541/ /pubmed/29743851 http://dx.doi.org/10.17179/excli2017-932 Text en Copyright © 2018 Liu et al. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited. |
spellingShingle | Original Article Liu, Daodong Zhang, Chaoju Li, Xiaolin Zhang, Hongmei Pang, Qixiong Wan, An MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma |
title | MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma |
title_full | MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma |
title_fullStr | MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma |
title_full_unstemmed | MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma |
title_short | MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma |
title_sort | microrna-567 inhibits cell proliferation, migration and invasion by targeting fgf5 in osteosarcoma |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938541/ https://www.ncbi.nlm.nih.gov/pubmed/29743851 http://dx.doi.org/10.17179/excli2017-932 |
work_keys_str_mv | AT liudaodong microrna567inhibitscellproliferationmigrationandinvasionbytargetingfgf5inosteosarcoma AT zhangchaoju microrna567inhibitscellproliferationmigrationandinvasionbytargetingfgf5inosteosarcoma AT lixiaolin microrna567inhibitscellproliferationmigrationandinvasionbytargetingfgf5inosteosarcoma AT zhanghongmei microrna567inhibitscellproliferationmigrationandinvasionbytargetingfgf5inosteosarcoma AT pangqixiong microrna567inhibitscellproliferationmigrationandinvasionbytargetingfgf5inosteosarcoma AT wanan microrna567inhibitscellproliferationmigrationandinvasionbytargetingfgf5inosteosarcoma |