Cargando…

Textural equilibrium melt geometries around tetrakaidecahedral grains

In textural equilibrium, partially molten materials minimize the total surface energy bound up in grain boundaries and grain–melt interfaces. Here, numerical calculations of such textural equilibrium geometries are presented for a space-filling tessellation of grains with a tetrakaidecahedral (trunc...

Descripción completa

Detalles Bibliográficos
Autor principal: Rudge, John F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938668/
https://www.ncbi.nlm.nih.gov/pubmed/29740254
http://dx.doi.org/10.1098/rspa.2017.0639
Descripción
Sumario:In textural equilibrium, partially molten materials minimize the total surface energy bound up in grain boundaries and grain–melt interfaces. Here, numerical calculations of such textural equilibrium geometries are presented for a space-filling tessellation of grains with a tetrakaidecahedral (truncated octahedral) unit cell. Two parameters determine the nature of the geometries: the porosity and the dihedral angle. A variety of distinct melt topologies occur for different combinations of these two parameters, and the boundaries between different topologies have been determined. For small dihedral angles, wetting of grain boundaries occurs once the porosity has exceeded 11%. An exhaustive account is given of the main properties of the geometries: their energy, pressure, mean curvature, contiguity and areas on cross sections and faces. Their effective permeabilities have been calculated, and demonstrate a transition between a quadratic variation with porosity at low porosities to a cubic variation at high porosities.