Cargando…

Dynamic Encoding of Incentive Salience in the Ventral Pallidum: Dependence on the Form of the Reward Cue

Some rats are especially prone to attribute incentive salience to a cue (conditioned stimulus, CS) paired with food reward (sign-trackers, STs), but the extent they do so varies as a function of the form of the CS. Other rats respond primarily to the predictive value of a cue (goal-trackers, GTs), r...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahrens, Allison M., Ferguson, Lindsay M., Robinson, Terry E., Aldridge, J. Wayne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938716/
https://www.ncbi.nlm.nih.gov/pubmed/29740595
http://dx.doi.org/10.1523/ENEURO.0328-17.2018
Descripción
Sumario:Some rats are especially prone to attribute incentive salience to a cue (conditioned stimulus, CS) paired with food reward (sign-trackers, STs), but the extent they do so varies as a function of the form of the CS. Other rats respond primarily to the predictive value of a cue (goal-trackers, GTs), regardless of its form. Sign-tracking is associated with greater cue-induced activation of mesolimbic structures than goal-tracking; however, it is unclear how the form of the CS itself influences activity in neural systems involved in incentive salience attribution. Thus, our goal was to determine how different cue modalities affect neural activity in the ventral pallidum (VP), which is known to encode incentive salience attribution, as rats performed a two-CS Pavlovian conditioned approach task in which both a lever-CS and a tone-CS predicted identical food reward. The lever-CS elicited sign-tracking in some rats (STs) and goal-tracking in others (GTs), whereas the tone-CS elicited only goal-tracking in all rats. The lever-CS elicited robust changes in neural activity (sustained tonic increases or decreases in firing) throughout the VP in STs, relative to GTs. These changes were not seen when STs were exposed to the tone-CS, and in GTs there were no differences in firing between the lever-CS and tone-CS. We conclude that neural activity throughout the VP encodes incentive signals and is especially responsive when a cue is of a form that promotes the attribution of incentive salience to it, especially in predisposed individuals.