Cargando…
Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK
Hypofunction of N-methyl-d-aspartate receptors (NMDARs) in inhibitory GABAergic interneurons is implicated in the pathophysiology of schizophrenia (SZ), a heritable disorder with many susceptibility genes. However, it is still unclear how SZ risk genes interfere with NMDAR-mediated synaptic transmis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938717/ https://www.ncbi.nlm.nih.gov/pubmed/29740596 http://dx.doi.org/10.1523/ENEURO.0418-17.2018 |
_version_ | 1783320835135635456 |
---|---|
author | Kotzadimitriou, Dimitrios Nissen, Wiebke Paizs, Melinda Newton, Kathryn Harrison, Paul J. Paulsen, Ole Lamsa, Karri |
author_facet | Kotzadimitriou, Dimitrios Nissen, Wiebke Paizs, Melinda Newton, Kathryn Harrison, Paul J. Paulsen, Ole Lamsa, Karri |
author_sort | Kotzadimitriou, Dimitrios |
collection | PubMed |
description | Hypofunction of N-methyl-d-aspartate receptors (NMDARs) in inhibitory GABAergic interneurons is implicated in the pathophysiology of schizophrenia (SZ), a heritable disorder with many susceptibility genes. However, it is still unclear how SZ risk genes interfere with NMDAR-mediated synaptic transmission in diverse inhibitory interneuron populations. One putative risk gene is neuregulin 1 (NRG1), which signals via the receptor tyrosine kinase ErbB4, itself a schizophrenia risk gene. The type I isoform of NRG1 shows increased expression in the brain of SZ patients, and ErbB4 is enriched in GABAergic interneurons expressing parvalbumin (PV) or cholecystokinin (CCK). Here, we investigated ErbB4 expression and synaptic transmission in interneuronal populations of the hippocampus of transgenic mice overexpressing NRG1 type I (NRG1(tg-type-I) mice). Immunohistochemical analyses confirmed that ErbB4 was coexpressed with either PV or CCK in hippocampal interneurons, but we observed a reduced number of ErbB4-immunopositive interneurons in the NRG1(tg-type-I) mice. NMDAR-mediated currents in interneurons expressing PV (including PV(+) basket cells) or CCK were reduced in NRG1(tg-type-I) mice compared to their littermate controls. We found no difference in AMPA receptor–mediated currents. Optogenetic activation (5 pulses at 20 Hz) of local glutamatergic fibers revealed a decreased NMDAR-mediated contribution to disynaptic GABAergic inhibition of pyramidal cells in the NRG1(tg-type-I) mice. GABAergic synaptic transmission from either PV(+) or CCK(+) interneurons, and glutamatergic transmission onto pyramidal cells, did not significantly differ between genotypes. The results indicate that synaptic NMDAR-mediated signaling in hippocampal interneurons is sensitive to chronically elevated NGR1 type I levels. This may contribute to the pathophysiological consequences of increased NRG1 expression in SZ. |
format | Online Article Text |
id | pubmed-5938717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-59387172018-05-08 Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK Kotzadimitriou, Dimitrios Nissen, Wiebke Paizs, Melinda Newton, Kathryn Harrison, Paul J. Paulsen, Ole Lamsa, Karri eNeuro New Research Hypofunction of N-methyl-d-aspartate receptors (NMDARs) in inhibitory GABAergic interneurons is implicated in the pathophysiology of schizophrenia (SZ), a heritable disorder with many susceptibility genes. However, it is still unclear how SZ risk genes interfere with NMDAR-mediated synaptic transmission in diverse inhibitory interneuron populations. One putative risk gene is neuregulin 1 (NRG1), which signals via the receptor tyrosine kinase ErbB4, itself a schizophrenia risk gene. The type I isoform of NRG1 shows increased expression in the brain of SZ patients, and ErbB4 is enriched in GABAergic interneurons expressing parvalbumin (PV) or cholecystokinin (CCK). Here, we investigated ErbB4 expression and synaptic transmission in interneuronal populations of the hippocampus of transgenic mice overexpressing NRG1 type I (NRG1(tg-type-I) mice). Immunohistochemical analyses confirmed that ErbB4 was coexpressed with either PV or CCK in hippocampal interneurons, but we observed a reduced number of ErbB4-immunopositive interneurons in the NRG1(tg-type-I) mice. NMDAR-mediated currents in interneurons expressing PV (including PV(+) basket cells) or CCK were reduced in NRG1(tg-type-I) mice compared to their littermate controls. We found no difference in AMPA receptor–mediated currents. Optogenetic activation (5 pulses at 20 Hz) of local glutamatergic fibers revealed a decreased NMDAR-mediated contribution to disynaptic GABAergic inhibition of pyramidal cells in the NRG1(tg-type-I) mice. GABAergic synaptic transmission from either PV(+) or CCK(+) interneurons, and glutamatergic transmission onto pyramidal cells, did not significantly differ between genotypes. The results indicate that synaptic NMDAR-mediated signaling in hippocampal interneurons is sensitive to chronically elevated NGR1 type I levels. This may contribute to the pathophysiological consequences of increased NRG1 expression in SZ. Society for Neuroscience 2018-05-08 /pmc/articles/PMC5938717/ /pubmed/29740596 http://dx.doi.org/10.1523/ENEURO.0418-17.2018 Text en Copyright © 2018 Kotzadimitriou et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Kotzadimitriou, Dimitrios Nissen, Wiebke Paizs, Melinda Newton, Kathryn Harrison, Paul J. Paulsen, Ole Lamsa, Karri Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK |
title | Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK |
title_full | Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK |
title_fullStr | Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK |
title_full_unstemmed | Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK |
title_short | Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor–Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK |
title_sort | neuregulin 1 type i overexpression is associated with reduced nmda receptor–mediated synaptic signaling in hippocampal interneurons expressing pv or cck |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938717/ https://www.ncbi.nlm.nih.gov/pubmed/29740596 http://dx.doi.org/10.1523/ENEURO.0418-17.2018 |
work_keys_str_mv | AT kotzadimitrioudimitrios neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck AT nissenwiebke neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck AT paizsmelinda neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck AT newtonkathryn neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck AT harrisonpaulj neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck AT paulsenole neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck AT lamsakarri neuregulin1typeioverexpressionisassociatedwithreducednmdareceptormediatedsynapticsignalinginhippocampalinterneuronsexpressingpvorcck |