Cargando…
Evaluation of threshold selection methods for adaptive kernel density estimation in disease mapping
BACKGROUND: Maps of disease rates produced without careful consideration of the underlying population distribution may be unreliable due to the well-known small numbers problem. Smoothing methods such as Kernel Density Estimation (KDE) are employed to control the population basis of spatial support...
Autores principales: | Ruckthongsook, Warangkana, Tiwari, Chetan, Oppong, Joseph R., Natesan, Prathiba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938815/ https://www.ncbi.nlm.nih.gov/pubmed/29739415 http://dx.doi.org/10.1186/s12942-018-0129-9 |
Ejemplares similares
-
Improving the sorting efficiency of maize haploid kernels using an NMR-based method with oil content double thresholds
por: Qu, Yanzhi, et al.
Publicado: (2021) -
An adaptive threshold determination method of feature screening for genomic selection
por: Fu, Guifang, et al.
Publicado: (2017) -
An Adaptive Background Subtraction Method Based on Kernel Density Estimation
por: Lee, Jeisung, et al.
Publicado: (2012) -
High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging
por: Makanza, R., et al.
Publicado: (2018) -
A feature selection method based on multiple kernel learning with expression profiles of different types
por: Du, Wei, et al.
Publicado: (2017)