Cargando…
An explainable deep machine vision framework for plant stress phenotyping
Current approaches for accurate identification, classification, and quantification of biotic and abiotic stresses in crop research and production are predominantly visual and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intrarater cogn...
Autores principales: | Ghosal, Sambuddha, Blystone, David, Singh, Asheesh K., Ganapathysubramanian, Baskar, Singh, Arti, Sarkar, Soumik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939070/ https://www.ncbi.nlm.nih.gov/pubmed/29666265 http://dx.doi.org/10.1073/pnas.1716999115 |
Ejemplares similares
-
Plant disease identification using explainable 3D deep learning on hyperspectral images
por: Nagasubramanian, Koushik, et al.
Publicado: (2019) -
Computer vision and machine learning for robust phenotyping in genome-wide studies
por: Zhang, Jiaoping, et al.
Publicado: (2017) -
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
por: Naik, Hsiang Sing, et al.
Publicado: (2017) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
A deep learning framework to discern and count microscopic nematode eggs
por: Akintayo, Adedotun, et al.
Publicado: (2018)