Cargando…

Thermally stable, highly efficient, ultraflexible organic photovoltaics

Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiaomin, Fukuda, Kenjiro, Karki, Akchheta, Park, Sungjun, Kimura, Hiroki, Jinno, Hiroaki, Watanabe, Nobuhiro, Yamamoto, Shuhei, Shimomura, Satoru, Kitazawa, Daisuke, Yokota, Tomoyuki, Umezu, Shinjiro, Nguyen, Thuc-Quyen, Someya, Takao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939109/
https://www.ncbi.nlm.nih.gov/pubmed/29666257
http://dx.doi.org/10.1073/pnas.1801187115
_version_ 1783320904554512384
author Xu, Xiaomin
Fukuda, Kenjiro
Karki, Akchheta
Park, Sungjun
Kimura, Hiroki
Jinno, Hiroaki
Watanabe, Nobuhiro
Yamamoto, Shuhei
Shimomura, Satoru
Kitazawa, Daisuke
Yokota, Tomoyuki
Umezu, Shinjiro
Nguyen, Thuc-Quyen
Someya, Takao
author_facet Xu, Xiaomin
Fukuda, Kenjiro
Karki, Akchheta
Park, Sungjun
Kimura, Hiroki
Jinno, Hiroaki
Watanabe, Nobuhiro
Yamamoto, Shuhei
Shimomura, Satoru
Kitazawa, Daisuke
Yokota, Tomoyuki
Umezu, Shinjiro
Nguyen, Thuc-Quyen
Someya, Takao
author_sort Xu, Xiaomin
collection PubMed
description Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation.
format Online
Article
Text
id pubmed-5939109
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-59391092018-05-09 Thermally stable, highly efficient, ultraflexible organic photovoltaics Xu, Xiaomin Fukuda, Kenjiro Karki, Akchheta Park, Sungjun Kimura, Hiroki Jinno, Hiroaki Watanabe, Nobuhiro Yamamoto, Shuhei Shimomura, Satoru Kitazawa, Daisuke Yokota, Tomoyuki Umezu, Shinjiro Nguyen, Thuc-Quyen Someya, Takao Proc Natl Acad Sci U S A Physical Sciences Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation. National Academy of Sciences 2018-05-01 2018-04-16 /pmc/articles/PMC5939109/ /pubmed/29666257 http://dx.doi.org/10.1073/pnas.1801187115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Xu, Xiaomin
Fukuda, Kenjiro
Karki, Akchheta
Park, Sungjun
Kimura, Hiroki
Jinno, Hiroaki
Watanabe, Nobuhiro
Yamamoto, Shuhei
Shimomura, Satoru
Kitazawa, Daisuke
Yokota, Tomoyuki
Umezu, Shinjiro
Nguyen, Thuc-Quyen
Someya, Takao
Thermally stable, highly efficient, ultraflexible organic photovoltaics
title Thermally stable, highly efficient, ultraflexible organic photovoltaics
title_full Thermally stable, highly efficient, ultraflexible organic photovoltaics
title_fullStr Thermally stable, highly efficient, ultraflexible organic photovoltaics
title_full_unstemmed Thermally stable, highly efficient, ultraflexible organic photovoltaics
title_short Thermally stable, highly efficient, ultraflexible organic photovoltaics
title_sort thermally stable, highly efficient, ultraflexible organic photovoltaics
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939109/
https://www.ncbi.nlm.nih.gov/pubmed/29666257
http://dx.doi.org/10.1073/pnas.1801187115
work_keys_str_mv AT xuxiaomin thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT fukudakenjiro thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT karkiakchheta thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT parksungjun thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT kimurahiroki thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT jinnohiroaki thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT watanabenobuhiro thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT yamamotoshuhei thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT shimomurasatoru thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT kitazawadaisuke thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT yokotatomoyuki thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT umezushinjiro thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT nguyenthucquyen thermallystablehighlyefficientultraflexibleorganicphotovoltaics
AT someyatakao thermallystablehighlyefficientultraflexibleorganicphotovoltaics