Cargando…
Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex
The dorsal, parietal visual stream is activated when seeing objects, but the exact nature of parietal object representations is still under discussion. Here we test 2 specific hypotheses. First, parietal cortex is biased to host some representations more than others, with a different bias compared w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939221/ https://www.ncbi.nlm.nih.gov/pubmed/28108492 http://dx.doi.org/10.1093/cercor/bhw419 |
Sumario: | The dorsal, parietal visual stream is activated when seeing objects, but the exact nature of parietal object representations is still under discussion. Here we test 2 specific hypotheses. First, parietal cortex is biased to host some representations more than others, with a different bias compared with ventral areas. A prime example would be object action representations. Second, parietal cortex forms a general multiple-demand network with frontal areas, showing similar task effects and representational content compared with frontal areas. To differentiate between these hypotheses, we implemented a human neuroimaging study with a stimulus set that dissociates associated object action from object category while manipulating task context to be either action- or category-related. Representations in parietal as well as prefrontal areas represented task-relevant object properties (action representations in the action task), with no sign of the irrelevant object property (category representations in the action task). In contrast, irrelevant object properties were represented in ventral areas. These findings emphasize that human parietal cortex does not preferentially represent particular object properties irrespective of task, but together with frontal areas is part of a multiple-demand and content-rich cortical network representing task-relevant object properties. |
---|