Cargando…

Axonal and subcellular labeling using modified rabies viral vectors

An important aspect of any neural circuit is the placement of its output synapses, at levels ranging from macroscopic to subcellular. The many new molecular tools for locating and manipulating synapses are limited by the viral vectors available for delivering them. Adeno-associated viruses are the b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wickersham, Ian R., Sullivan, Heather A., Seung, H. Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939574/
https://www.ncbi.nlm.nih.gov/pubmed/23945836
http://dx.doi.org/10.1038/ncomms3332
Descripción
Sumario:An important aspect of any neural circuit is the placement of its output synapses, at levels ranging from macroscopic to subcellular. The many new molecular tools for locating and manipulating synapses are limited by the viral vectors available for delivering them. Adeno-associated viruses are the best current means of labeling and manipulating axons and synapses, but they have never expressed more than one transgene highly enough to label fine axonal structure while also labeling or perturbing synapses. Their slow expression also makes them incompatible with retrograde and transsynaptic vectors, preventing powerful combinatorial experiments. Here we show that deletion-mutant rabies virus can be specifically targeted to cells local to an injection site, brightly labeling axons even when coexpressing two other transgenes. We demonstrate several novel capabilities: simultaneously labeling axons and presynaptic terminals, labeling both dendrites and postsynaptic densities, and simultaneously labeling a region’s inputs and outputs using coinjected vectors.