Cargando…
Historical Datasets Support Genomic Selection Models for the Prediction of Cotton Fiber Quality Phenotypes Across Multiple Environments
Genomic selection (GS) has successfully been used in plant breeding to improve selection efficiency and reduce breeding time and cost. However, there has not been a study to evaluate GS prediction models that may be used for predicting cotton breeding lines across multiple environments. In this stud...
Autores principales: | Gapare, Washington, Liu, Shiming, Conaty, Warren, Zhu, Qian-Hao, Gillespie, Vanessa, Llewellyn, Danny, Stiller, Warwick, Wilson, Iain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940163/ https://www.ncbi.nlm.nih.gov/pubmed/29559536 http://dx.doi.org/10.1534/g3.118.200140 |
Ejemplares similares
-
Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods
por: Li, Zitong, et al.
Publicado: (2022) -
Core Collections: Is There Any Value for Cotton Breeding?
por: Egan, Lucy Marie, et al.
Publicado: (2022) -
HairNet: a deep learning model to score leaf hairiness, a key phenotype for cotton fibre yield, value and insect resistance
por: Rolland, Vivien, et al.
Publicado: (2022) -
Cotton Breeding in Australia: Meeting the Challenges of the 21st Century
por: Conaty, Warren C., et al.
Publicado: (2022) -
Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population
por: Lacape, Jean-Marc, et al.
Publicado: (2010)