Cargando…
Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica
Emerging pathogens are a major threat to public health, however understanding how pathogens adapt to new niches remains a challenge. New methods are urgently required to provide functional insights into pathogens from the massive genomic data sets now being generated from routine pathogen surveillan...
Autores principales: | Wheeler, Nicole E., Gardner, Paul P., Barquist, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940178/ https://www.ncbi.nlm.nih.gov/pubmed/29738521 http://dx.doi.org/10.1371/journal.pgen.1007333 |
Ejemplares similares
-
Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2 Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar
por: Kingsley, Robert A., et al.
Publicado: (2013) -
A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes
por: Wheeler, Nicole E., et al.
Publicado: (2016) -
Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation
por: Anderson, Christopher J., et al.
Publicado: (2017) -
Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli
por: Lupolova, Nadejda, et al.
Publicado: (2017) -
Erratum: Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli
por: Lupolova, Nadejda, et al.
Publicado: (2018)