Cargando…
Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning
Drug-drug interaction (DDI) is a change in the effect of a drug when patient takes another drug. Characterizing DDIs is extremely important to avoid potential adverse drug reactions. We represent DDIs as a complex network in which nodes refer to drugs and links refer to their potential interactions....
Autores principales: | Kastrin, Andrej, Ferk, Polonca, Leskošek, Brane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940181/ https://www.ncbi.nlm.nih.gov/pubmed/29738537 http://dx.doi.org/10.1371/journal.pone.0196865 |
Ejemplares similares
-
Single Cell RNA Sequencing in Autoimmune Inflammatory Rheumatic Diseases: Current Applications, Challenges and a Step Toward Precision Medicine
por: Kuret, Tadeja, et al.
Publicado: (2022) -
TiO(2) Nanoparticles and Their Effects on Eukaryotic Cells: A Double-Edged Sword
por: Gojznikar, Jan, et al.
Publicado: (2022) -
The Carniolan Honeybee from Slovenia—A Complete and Annotated Mitochondrial Genome with Comparisons to Closely Related Apis mellifera Subspecies
por: Moškrič, Ajda, et al.
Publicado: (2022) -
Biomedical question answering using semantic relations
por: Hristovski, Dimitar, et al.
Publicado: (2015) -
Multitype drug interaction prediction based on the deep fusion of drug features and topological relationships
por: Kang, Li-Ping, et al.
Publicado: (2022)