Cargando…
Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats
Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing bra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940222/ https://www.ncbi.nlm.nih.gov/pubmed/29738554 http://dx.doi.org/10.1371/journal.pone.0197187 |
_version_ | 1783321074393415680 |
---|---|
author | Meconi, Alicia Wortman, Ryan C. Wright, David K. Neale, Katie J. Clarkson, Melissa Shultz, Sandy R. Christie, Brian R. |
author_facet | Meconi, Alicia Wortman, Ryan C. Wright, David K. Neale, Katie J. Clarkson, Melissa Shultz, Sandy R. Christie, Brian R. |
author_sort | Meconi, Alicia |
collection | PubMed |
description | Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing brain. To better study this issue, we developed an awake closed head injury (ACHI) model that enabled repeated concussions to be performed reliably and reproducibly in juvenile rats. A neurological assessment protocol (NAP) score was generated immediately after each ACHI to help quantify the cumulative effects of repeated injury on level of consciousness, and basic motor and reflexive capacity. Here we show that we can produce a repeated ACHI (4 impacts in two days) in both male and female juvenile rats without significant mortality or pain. We show that both single and repeated injuries produce acute neurological deficits resembling clinical concussion symptoms that can be quantified using the NAP score. Behavioural analyses indicate repeated ACHI acutely impaired spatial memory in the Barnes maze, and an interesting sex effect was revealed as memory impairment correlated moderately with poorer NAP score performance in a subset of females. These cognitive impairments occurred in the absence of motor impairments on the Rotarod, or emotional changes in the open field and elevated plus mazes. Cresyl violet histology and structural magnetic resonance imaging (MRI) indicated that repeated ACHI did not produce significant structural damage. MRI also confirmed there was no volumetric loss in the cortex, hippocampus, or corpus callosum of animals at 1 or 7 days post-ACHI. Together these data indicate that the ACHI model can provide a reliable, high throughput means to study the effects of concussions in juvenile rats. |
format | Online Article Text |
id | pubmed-5940222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59402222018-05-18 Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats Meconi, Alicia Wortman, Ryan C. Wright, David K. Neale, Katie J. Clarkson, Melissa Shultz, Sandy R. Christie, Brian R. PLoS One Research Article Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing brain. To better study this issue, we developed an awake closed head injury (ACHI) model that enabled repeated concussions to be performed reliably and reproducibly in juvenile rats. A neurological assessment protocol (NAP) score was generated immediately after each ACHI to help quantify the cumulative effects of repeated injury on level of consciousness, and basic motor and reflexive capacity. Here we show that we can produce a repeated ACHI (4 impacts in two days) in both male and female juvenile rats without significant mortality or pain. We show that both single and repeated injuries produce acute neurological deficits resembling clinical concussion symptoms that can be quantified using the NAP score. Behavioural analyses indicate repeated ACHI acutely impaired spatial memory in the Barnes maze, and an interesting sex effect was revealed as memory impairment correlated moderately with poorer NAP score performance in a subset of females. These cognitive impairments occurred in the absence of motor impairments on the Rotarod, or emotional changes in the open field and elevated plus mazes. Cresyl violet histology and structural magnetic resonance imaging (MRI) indicated that repeated ACHI did not produce significant structural damage. MRI also confirmed there was no volumetric loss in the cortex, hippocampus, or corpus callosum of animals at 1 or 7 days post-ACHI. Together these data indicate that the ACHI model can provide a reliable, high throughput means to study the effects of concussions in juvenile rats. Public Library of Science 2018-05-08 /pmc/articles/PMC5940222/ /pubmed/29738554 http://dx.doi.org/10.1371/journal.pone.0197187 Text en © 2018 Meconi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Meconi, Alicia Wortman, Ryan C. Wright, David K. Neale, Katie J. Clarkson, Melissa Shultz, Sandy R. Christie, Brian R. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
title | Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
title_full | Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
title_fullStr | Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
title_full_unstemmed | Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
title_short | Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
title_sort | repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940222/ https://www.ncbi.nlm.nih.gov/pubmed/29738554 http://dx.doi.org/10.1371/journal.pone.0197187 |
work_keys_str_mv | AT meconialicia repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats AT wortmanryanc repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats AT wrightdavidk repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats AT nealekatiej repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats AT clarksonmelissa repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats AT shultzsandyr repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats AT christiebrianr repeatedmildtraumaticbraininjurycancauseacuteneurologicimpairmentwithoutovertstructuraldamageinjuvenilerats |