Cargando…
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based on rigor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940814/ https://www.ncbi.nlm.nih.gov/pubmed/29740025 http://dx.doi.org/10.1038/s41598-018-25419-3 |
Sumario: | New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based on rigorous calculations of size-dependent free energies for a Sutton-Chen model of iron previously fit to ab initio calculations, and refute statements recently appearing in the literature indicating that the size of the simulation cell is critical for stabilization of the bcc phase. |
---|