Cargando…
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using clusteri...
Autores principales: | Peikari, Mohammad, Salama, Sherine, Nofech-Mozes, Sharon, Martel, Anne L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940864/ https://www.ncbi.nlm.nih.gov/pubmed/29739993 http://dx.doi.org/10.1038/s41598-018-24876-0 |
Ejemplares similares
-
Automated and Manual Quantification of Tumour Cellularity in Digital Slides for Tumour Burden Assessment
por: Akbar, Shazia, et al.
Publicado: (2019) -
Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach
por: Manian, Vidya, et al.
Publicado: (2022) -
Overcoming the limitations of patch-based learning to detect cancer in whole slide images
por: Ciga, Ozan, et al.
Publicado: (2021) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
por: Liu, Kun, et al.
Publicado: (2022)