Cargando…
Computer-aided diagnosis for ((123)I)FP-CIT imaging: impact on clinical reporting
BACKGROUND: For ((123)I)FP-CIT imaging, a number of algorithms have shown high performance in distinguishing normal patient images from those with disease, but none have yet been tested as part of reporting workflows. This study aims to evaluate the impact on reporters’ performance of a computer-aid...
Autores principales: | Taylor, Jonathan Christopher, Romanowski, Charles, Lorenz, Eleanor, Lo, Christine, Bandmann, Oliver, Fenner, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940985/ https://www.ncbi.nlm.nih.gov/pubmed/29740722 http://dx.doi.org/10.1186/s13550-018-0393-5 |
Ejemplares similares
-
Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?
por: Taylor, Jonathan Christopher, et al.
Publicado: (2017) -
Autopsy validation of (123)I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB
por: Thomas, Alan J., et al.
Publicado: (2017) -
Clinicopathological and (123)I‐FP‐CIT SPECT correlations in patients with dementia
por: Jung, Youngsin, et al.
Publicado: (2018) -
Imaging of serotonin transporters with [(123)I]FP-CIT SPECT in the human hypothalamus
por: Borgers, Anke J, et al.
Publicado: (2013) -
Focal (123)I-FP-CIT SPECT Abnormality in Midbrain Vascular Parkinsonism
por: Solla, Paolo, et al.
Publicado: (2015)