Cargando…

MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway

Colorectal cancer (CRC) is a very common metastatic tumor with active angiogenesis that requires active angiogenesis. Recently, increased microRNA-181a-5p (miR-181a) expression was found to be significantly associated with liver metastasis and poor outcome in CRC patients. In this study, the role of...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Wu, Wang, Xiaojun, Li, Jialu, You, Chaoying, Lu, Pan, Feng, Huijin, Kong, Yan, Zhang, Haiyang, Liu, Yanqing, Jiao, Ruihua, Chen, Xi, Ba, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941226/
https://www.ncbi.nlm.nih.gov/pubmed/29739921
http://dx.doi.org/10.1038/s41419-018-0490-4
Descripción
Sumario:Colorectal cancer (CRC) is a very common metastatic tumor with active angiogenesis that requires active angiogenesis. Recently, increased microRNA-181a-5p (miR-181a) expression was found to be significantly associated with liver metastasis and poor outcome in CRC patients. In this study, the role of miR-181a in tumor angiogenesis was further investigated. Capillary tube formation assays were used to demonstrate the ability of miR-181a to promote tumor angiogenesis. Bioinformatics analyses identified SRC kinase signaling inhibitor 1 (SRCIN1) as a potential target of miR-181a. Next, two CRC cell lines (HT29 and SW480) were used to clarify the function of miR-181a through SRCIN1 targeting. In addition, the biological effects of SRCIN1 inhibition by miR-181a were examined in vitro by quantitative RT-PCR, western blotting and enzyme-linked immunosorbent assay and in vivo by Matrigel plug angiogenesis assays and immunohistochemical staining. In clinical samples, Fluorescence in situ hybridization and immunofluorescence were performed to detect the relation between miR-181a and SRCIN1. In addition, SRCIN1 protein and miR-181a expression levels in CRC tissues were also measured by western blot and quantitative real-time polymerase chain reaction. MiR-181a markedly augmented the capability of CRC cells to advance tube formation in endothelial cells in vitro. The Matrigel plug assay showed that miR-181a promoted angiogenesis in vivo. In conclusion, miR-181a inhibited SRCIN1, which caused SRC to transform from an inactive status to an active conformation and to trigger vascular endothelial growth factor secretion, leading to increased angiogenesis. MiR-181a dysregulation contributes to angiogenesis in CRC, and downregulation of miR-181a represents a promising, novel strategy to achieve an efficient antiangiogenic response in anti-CRC therapy.