Cargando…
Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii)
Gluconeogenesis responses was assessed during a short starvation period and subsequent refeeding in Siberian sturgeon (Acipenser baerii) previously fed different dietary carbohydrates levels and experienced to a glucose stimuli during early life. The sturgeon larvae were previously fed either a high...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941230/ https://www.ncbi.nlm.nih.gov/pubmed/29767079 http://dx.doi.org/10.1016/j.aninu.2017.06.001 |
_version_ | 1783321246544429056 |
---|---|
author | Liang, Xiaofang Wang, Jia Gong, Guan Xue, Min Dong, Yingchao Wu, Xiufeng Wang, Xin Chen, Chunshan Liang, Xufang Qin, Yuchang |
author_facet | Liang, Xiaofang Wang, Jia Gong, Guan Xue, Min Dong, Yingchao Wu, Xiufeng Wang, Xin Chen, Chunshan Liang, Xufang Qin, Yuchang |
author_sort | Liang, Xiaofang |
collection | PubMed |
description | Gluconeogenesis responses was assessed during a short starvation period and subsequent refeeding in Siberian sturgeon (Acipenser baerii) previously fed different dietary carbohydrates levels and experienced to a glucose stimuli during early life. The sturgeon larvae were previously fed either a high glucose diet (G) or a low glucose diet (F) from the first feeding to yolk absorption (8 to 12 d post-hatching [dph]). Each group of fish was sub-divided into 2 treatments at 13 dph and was fed either a high-carbohydrate diet (H) or a low carbohydrate diet (L) until 20 wk. In the current study, the fish in 4 groups (GL, FL, GH and FH) were experienced to starvation for 21 d following by re-feeding of their corresponding diets for 21 d. Fish were sampled at postprandial 6 and 24 h before starvation (P6h and P24h), starvation 7, 14 and 21 d (S7, S14 and S21) and 1, 7, 14 and 21 d during refeeding (R1, R7, R14 and R21). Plasma samples during refeeding were taken at P6h at each time point. Glycaemia levels, liver and muscle glycogen contents, activities and mRNA levels of hepatic gluconeogenic enzymes were examined. We found that both dietary carbohydrate levels and early glucose stimuli significantly affected the metabolic responses to starvation and refeeding in Siberian sturgeon (P < 0.05). During prolonged starvation, Siberian sturgeon firstly mobilized the liver glycogen and then improved gluconeogenesis when the dietary carbohydrates were abundant, whereas preserved the liver glycogen stores at a stable level and more effectively promoted gluconeogenesis when the dietary carbohydrates are absent to maintain glucose homoeostasis. During refeeding, as most teleostean, Siberian sturgeon failed controlling the activities and mRNA levels of phosphoenolpyruvate carboxykinase cytosolic forms (PEPCK-C), fructose-1,6-bisphosphatase (FBPase), but particularly controlled phosphoenolpyruvate carboxykinase mitochondrial forms (PEPCK-M) activities and mRNA expression of glucose-6-phosphatase (G6Pase, except in GL group). Siberian sturgeon has a full compensatory ability on growth, but this ability would be obstructed by early glucose stimuli when refeeding the low carbohydrate diet after S21. |
format | Online Article Text |
id | pubmed-5941230 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-59412302018-05-14 Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) Liang, Xiaofang Wang, Jia Gong, Guan Xue, Min Dong, Yingchao Wu, Xiufeng Wang, Xin Chen, Chunshan Liang, Xufang Qin, Yuchang Anim Nutr Aquaculture Nutrition Gluconeogenesis responses was assessed during a short starvation period and subsequent refeeding in Siberian sturgeon (Acipenser baerii) previously fed different dietary carbohydrates levels and experienced to a glucose stimuli during early life. The sturgeon larvae were previously fed either a high glucose diet (G) or a low glucose diet (F) from the first feeding to yolk absorption (8 to 12 d post-hatching [dph]). Each group of fish was sub-divided into 2 treatments at 13 dph and was fed either a high-carbohydrate diet (H) or a low carbohydrate diet (L) until 20 wk. In the current study, the fish in 4 groups (GL, FL, GH and FH) were experienced to starvation for 21 d following by re-feeding of their corresponding diets for 21 d. Fish were sampled at postprandial 6 and 24 h before starvation (P6h and P24h), starvation 7, 14 and 21 d (S7, S14 and S21) and 1, 7, 14 and 21 d during refeeding (R1, R7, R14 and R21). Plasma samples during refeeding were taken at P6h at each time point. Glycaemia levels, liver and muscle glycogen contents, activities and mRNA levels of hepatic gluconeogenic enzymes were examined. We found that both dietary carbohydrate levels and early glucose stimuli significantly affected the metabolic responses to starvation and refeeding in Siberian sturgeon (P < 0.05). During prolonged starvation, Siberian sturgeon firstly mobilized the liver glycogen and then improved gluconeogenesis when the dietary carbohydrates were abundant, whereas preserved the liver glycogen stores at a stable level and more effectively promoted gluconeogenesis when the dietary carbohydrates are absent to maintain glucose homoeostasis. During refeeding, as most teleostean, Siberian sturgeon failed controlling the activities and mRNA levels of phosphoenolpyruvate carboxykinase cytosolic forms (PEPCK-C), fructose-1,6-bisphosphatase (FBPase), but particularly controlled phosphoenolpyruvate carboxykinase mitochondrial forms (PEPCK-M) activities and mRNA expression of glucose-6-phosphatase (G6Pase, except in GL group). Siberian sturgeon has a full compensatory ability on growth, but this ability would be obstructed by early glucose stimuli when refeeding the low carbohydrate diet after S21. KeAi Publishing 2017-09 2017-06-15 /pmc/articles/PMC5941230/ /pubmed/29767079 http://dx.doi.org/10.1016/j.aninu.2017.06.001 Text en © 2017, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Aquaculture Nutrition Liang, Xiaofang Wang, Jia Gong, Guan Xue, Min Dong, Yingchao Wu, Xiufeng Wang, Xin Chen, Chunshan Liang, Xufang Qin, Yuchang Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) |
title | Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) |
title_full | Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) |
title_fullStr | Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) |
title_full_unstemmed | Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) |
title_short | Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii) |
title_sort | gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in siberian sturgeon (acipenser baerii) |
topic | Aquaculture Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941230/ https://www.ncbi.nlm.nih.gov/pubmed/29767079 http://dx.doi.org/10.1016/j.aninu.2017.06.001 |
work_keys_str_mv | AT liangxiaofang gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT wangjia gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT gongguan gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT xuemin gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT dongyingchao gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT wuxiufeng gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT wangxin gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT chenchunshan gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT liangxufang gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii AT qinyuchang gluconeogenesisduringstarvationandrefeedingphaseisaffectedbypreviousdietarycarbohydrateslevelsandaglucosestimuliduringearlylifeinsiberiansturgeonacipenserbaerii |