Cargando…

The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis

The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confir...

Descripción completa

Detalles Bibliográficos
Autores principales: de Mattos-Shipley, Kate M. J., Greco, Claudio, Heard, David M., Hough, Gemma, Mulholland, Nicholas P., Vincent, Jason L., Micklefield, Jason, Simpson, Thomas J., Willis, Christine L., Cox, Russell J., Bailey, Andrew M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941284/
https://www.ncbi.nlm.nih.gov/pubmed/29780540
http://dx.doi.org/10.1039/c8sc00717a
_version_ 1783321258928111616
author de Mattos-Shipley, Kate M. J.
Greco, Claudio
Heard, David M.
Hough, Gemma
Mulholland, Nicholas P.
Vincent, Jason L.
Micklefield, Jason
Simpson, Thomas J.
Willis, Christine L.
Cox, Russell J.
Bailey, Andrew M.
author_facet de Mattos-Shipley, Kate M. J.
Greco, Claudio
Heard, David M.
Hough, Gemma
Mulholland, Nicholas P.
Vincent, Jason L.
Micklefield, Jason
Simpson, Thomas J.
Willis, Christine L.
Cox, Russell J.
Bailey, Andrew M.
author_sort de Mattos-Shipley, Kate M. J.
collection PubMed
description The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids.
format Online
Article
Text
id pubmed-5941284
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-59412842018-05-18 The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis de Mattos-Shipley, Kate M. J. Greco, Claudio Heard, David M. Hough, Gemma Mulholland, Nicholas P. Vincent, Jason L. Micklefield, Jason Simpson, Thomas J. Willis, Christine L. Cox, Russell J. Bailey, Andrew M. Chem Sci Chemistry The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids. Royal Society of Chemistry 2018-04-10 /pmc/articles/PMC5941284/ /pubmed/29780540 http://dx.doi.org/10.1039/c8sc00717a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
de Mattos-Shipley, Kate M. J.
Greco, Claudio
Heard, David M.
Hough, Gemma
Mulholland, Nicholas P.
Vincent, Jason L.
Micklefield, Jason
Simpson, Thomas J.
Willis, Christine L.
Cox, Russell J.
Bailey, Andrew M.
The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
title The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
title_full The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
title_fullStr The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
title_full_unstemmed The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
title_short The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
title_sort cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941284/
https://www.ncbi.nlm.nih.gov/pubmed/29780540
http://dx.doi.org/10.1039/c8sc00717a
work_keys_str_mv AT demattosshipleykatemj thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT grecoclaudio thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT hearddavidm thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT houghgemma thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT mulhollandnicholasp thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT vincentjasonl thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT micklefieldjason thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT simpsonthomasj thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT willischristinel thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT coxrussellj thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT baileyandrewm thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT demattosshipleykatemj cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT grecoclaudio cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT hearddavidm cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT houghgemma cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT mulhollandnicholasp cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT vincentjasonl cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT micklefieldjason cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT simpsonthomasj cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT willischristinel cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT coxrussellj cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis
AT baileyandrewm cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis