Cargando…
The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confir...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941284/ https://www.ncbi.nlm.nih.gov/pubmed/29780540 http://dx.doi.org/10.1039/c8sc00717a |
_version_ | 1783321258928111616 |
---|---|
author | de Mattos-Shipley, Kate M. J. Greco, Claudio Heard, David M. Hough, Gemma Mulholland, Nicholas P. Vincent, Jason L. Micklefield, Jason Simpson, Thomas J. Willis, Christine L. Cox, Russell J. Bailey, Andrew M. |
author_facet | de Mattos-Shipley, Kate M. J. Greco, Claudio Heard, David M. Hough, Gemma Mulholland, Nicholas P. Vincent, Jason L. Micklefield, Jason Simpson, Thomas J. Willis, Christine L. Cox, Russell J. Bailey, Andrew M. |
author_sort | de Mattos-Shipley, Kate M. J. |
collection | PubMed |
description | The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids. |
format | Online Article Text |
id | pubmed-5941284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-59412842018-05-18 The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis de Mattos-Shipley, Kate M. J. Greco, Claudio Heard, David M. Hough, Gemma Mulholland, Nicholas P. Vincent, Jason L. Micklefield, Jason Simpson, Thomas J. Willis, Christine L. Cox, Russell J. Bailey, Andrew M. Chem Sci Chemistry The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids. Royal Society of Chemistry 2018-04-10 /pmc/articles/PMC5941284/ /pubmed/29780540 http://dx.doi.org/10.1039/c8sc00717a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry de Mattos-Shipley, Kate M. J. Greco, Claudio Heard, David M. Hough, Gemma Mulholland, Nicholas P. Vincent, Jason L. Micklefield, Jason Simpson, Thomas J. Willis, Christine L. Cox, Russell J. Bailey, Andrew M. The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis |
title | The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
|
title_full | The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
|
title_fullStr | The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
|
title_full_unstemmed | The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
|
title_short | The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis
|
title_sort | cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941284/ https://www.ncbi.nlm.nih.gov/pubmed/29780540 http://dx.doi.org/10.1039/c8sc00717a |
work_keys_str_mv | AT demattosshipleykatemj thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT grecoclaudio thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT hearddavidm thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT houghgemma thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT mulhollandnicholasp thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT vincentjasonl thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT micklefieldjason thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT simpsonthomasj thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT willischristinel thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT coxrussellj thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT baileyandrewm thecycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT demattosshipleykatemj cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT grecoclaudio cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT hearddavidm cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT houghgemma cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT mulhollandnicholasp cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT vincentjasonl cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT micklefieldjason cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT simpsonthomasj cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT willischristinel cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT coxrussellj cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis AT baileyandrewm cycloaspeptidesuncoveringanewmodelformethylatednonribosomalpeptidebiosynthesis |