Cargando…
Automatic brain tissue segmentation based on graph filter
BACKGROUND: Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effe...
Autores principales: | Kong, Youyong, Chen, Xiaopeng, Wu, Jiasong, Zhang, Pinzheng, Chen, Yang, Shu, Huazhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941431/ https://www.ncbi.nlm.nih.gov/pubmed/29739350 http://dx.doi.org/10.1186/s12880-018-0252-x |
Ejemplares similares
-
Image denoising via a non-local patch graph total variation
por: Zhang, Yan, et al.
Publicado: (2019) -
Noise reduction of diffusion tensor images by sparse representation and dictionary learning
por: Kong, Youyong, et al.
Publicado: (2016) -
Fractional Wavelet-Based Generative Scattering Networks
por: Wu, Jiasong, et al.
Publicado: (2021) -
Spatio‐temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity
por: Kong, Youyong, et al.
Publicado: (2021) -
Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts
por: Wu, Weiwei, et al.
Publicado: (2016)