Cargando…

AIMP2-DX2 Promotes the Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma Cells

Nasopharyngeal carcinoma (NPC) is a head and neck tumor with high degree of malignancy and with high incidence especially in southern China. AIMP2-DX2, one isoform of the aminoacyl-tRNA synthetase interacting multifunctional proteins (AIMPs), is shown to be a potential target in many cancers. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Qingsong, Zhang, Jie, Zhang, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941793/
https://www.ncbi.nlm.nih.gov/pubmed/29854811
http://dx.doi.org/10.1155/2018/9253036
Descripción
Sumario:Nasopharyngeal carcinoma (NPC) is a head and neck tumor with high degree of malignancy and with high incidence especially in southern China. AIMP2-DX2, one isoform of the aminoacyl-tRNA synthetase interacting multifunctional proteins (AIMPs), is shown to be a potential target in many cancers. However, the detailed mechanisms of AIMP2-DX2 in NPC development remain to be elucidated. Here, we found that the mRNA expression level of AIMP2-DX2 was significantly increased in NPC specimens, compared with normal nasopharyngeal tissues. Microarray immunohistochemical analysis of NPC specimens and Kaplan–Meier analysis showed that patients with high AIMP2-DX2 protein expression had shorter overall survival than those with low AIMP2-DX2 level. Furthermore, mRNA and protein expression levels of AIMP2-DX2 were both increased in cultured NPC cell lines (5-8F, CNE-2Z, and CNE-1), by being compared with normal nasopharyngeal cell line NP69. Overexpression of AIMP2-DX2 remarkably promoted the cell viability, cell migration, and invasion of cultured NPC cells. Genetic knockdown of AIMP2-DX2 by shRNA lentiviruses significantly suppressed the proliferation, migration, and invasion and induced apoptosis of NPC cells. Inhibition of AIMP2-DX2 decreased the highly expressed level of matrix metalloproteinase- (MMP-) 2 and MMP-9, further suppressed proliferation, migration, and invasion in cultured NPC cells in vitro, and inhibited tumor growth in a xenograft mouse model in vivo. Taken together, these results suggest that AIMP2-DX2 plays an important role in the regulation of NPC and could be a potential therapeutic target and prognostic indicator for the treatment of NPC.