Cargando…
Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation
Huntington’s disease (HD) is one of the most devastating genetic neurodegenerative disorders with no effective medical therapy. β-Lapachone (βL) is a natural compound obtained from the bark of the Lapacho tree and has been reported to have beneficial effects on various diseases. Sirt1 is a deacetyla...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942716/ https://www.ncbi.nlm.nih.gov/pubmed/29742127 http://dx.doi.org/10.1371/journal.pone.0195968 |
_version_ | 1783321502594105344 |
---|---|
author | Lee, Mijung Ban, Jae-Jun Chung, Jin-Young Im, Wooseok Kim, Manho |
author_facet | Lee, Mijung Ban, Jae-Jun Chung, Jin-Young Im, Wooseok Kim, Manho |
author_sort | Lee, Mijung |
collection | PubMed |
description | Huntington’s disease (HD) is one of the most devastating genetic neurodegenerative disorders with no effective medical therapy. β-Lapachone (βL) is a natural compound obtained from the bark of the Lapacho tree and has been reported to have beneficial effects on various diseases. Sirt1 is a deacetylase of the sirtuin family and deacetylates proteins including the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) which is associated with mitochondrial respiration and biogenesis. To examine the effectiveness of βL on HD, βL was orally applied to R6/2 HD mice and behavioral phenotypes associated with HD, such as impairment of rota-rod performance and increase of clasping behavior, as well as changes of Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation were examined. Western blot results showed that Sirt1 and p-CREB levels were significantly increased in the brains of βL-treated R6/2 mice. An increase in deacetylation of PGC-1α, which is thought to increase its activity, was observed by oral administration of βL. In an in vitro HD model, βL treatment resulted in an attenuation of MitoSOX red fluorescence intensity, indicating an amelioration of mitochondrial reactive oxygen species by βL. Furthermore, improvements in the rota-rod performance and clasping score were observed in R6/2 HD mice after oral administration of βL compared to that of vehicle control-treated mice. Taken together, our data show that βL is a potential therapeutic candidate for the treatment of HD-associated phenotypes, and increases in Sirt1 level, CREB phosphorylation and PGC-103B1 deacetylation can be the possible underlying mechanism of the effects of βL. |
format | Online Article Text |
id | pubmed-5942716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59427162018-05-18 Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation Lee, Mijung Ban, Jae-Jun Chung, Jin-Young Im, Wooseok Kim, Manho PLoS One Research Article Huntington’s disease (HD) is one of the most devastating genetic neurodegenerative disorders with no effective medical therapy. β-Lapachone (βL) is a natural compound obtained from the bark of the Lapacho tree and has been reported to have beneficial effects on various diseases. Sirt1 is a deacetylase of the sirtuin family and deacetylates proteins including the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) which is associated with mitochondrial respiration and biogenesis. To examine the effectiveness of βL on HD, βL was orally applied to R6/2 HD mice and behavioral phenotypes associated with HD, such as impairment of rota-rod performance and increase of clasping behavior, as well as changes of Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation were examined. Western blot results showed that Sirt1 and p-CREB levels were significantly increased in the brains of βL-treated R6/2 mice. An increase in deacetylation of PGC-1α, which is thought to increase its activity, was observed by oral administration of βL. In an in vitro HD model, βL treatment resulted in an attenuation of MitoSOX red fluorescence intensity, indicating an amelioration of mitochondrial reactive oxygen species by βL. Furthermore, improvements in the rota-rod performance and clasping score were observed in R6/2 HD mice after oral administration of βL compared to that of vehicle control-treated mice. Taken together, our data show that βL is a potential therapeutic candidate for the treatment of HD-associated phenotypes, and increases in Sirt1 level, CREB phosphorylation and PGC-103B1 deacetylation can be the possible underlying mechanism of the effects of βL. Public Library of Science 2018-05-09 /pmc/articles/PMC5942716/ /pubmed/29742127 http://dx.doi.org/10.1371/journal.pone.0195968 Text en © 2018 Lee et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lee, Mijung Ban, Jae-Jun Chung, Jin-Young Im, Wooseok Kim, Manho Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation |
title | Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation |
title_full | Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation |
title_fullStr | Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation |
title_full_unstemmed | Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation |
title_short | Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation |
title_sort | amelioration of huntington's disease phenotypes by beta-lapachone is associated with increases in sirt1 expression, creb phosphorylation and pgc-1α deacetylation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942716/ https://www.ncbi.nlm.nih.gov/pubmed/29742127 http://dx.doi.org/10.1371/journal.pone.0195968 |
work_keys_str_mv | AT leemijung ameliorationofhuntingtonsdiseasephenotypesbybetalapachoneisassociatedwithincreasesinsirt1expressioncrebphosphorylationandpgc1adeacetylation AT banjaejun ameliorationofhuntingtonsdiseasephenotypesbybetalapachoneisassociatedwithincreasesinsirt1expressioncrebphosphorylationandpgc1adeacetylation AT chungjinyoung ameliorationofhuntingtonsdiseasephenotypesbybetalapachoneisassociatedwithincreasesinsirt1expressioncrebphosphorylationandpgc1adeacetylation AT imwooseok ameliorationofhuntingtonsdiseasephenotypesbybetalapachoneisassociatedwithincreasesinsirt1expressioncrebphosphorylationandpgc1adeacetylation AT kimmanho ameliorationofhuntingtonsdiseasephenotypesbybetalapachoneisassociatedwithincreasesinsirt1expressioncrebphosphorylationandpgc1adeacetylation |