Cargando…
Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators
Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We...
Autores principales: | Blomqvist, Björn R. H., Mann, Richard P., Sumpter, David J. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942783/ https://www.ncbi.nlm.nih.gov/pubmed/29742126 http://dx.doi.org/10.1371/journal.pone.0196355 |
Ejemplares similares
-
Bayesian Dynamical Systems Modelling in the Social Sciences
por: Ranganathan, Shyam, et al.
Publicado: (2014) -
Bayesian Network Model Averaging Classifiers by Subbagging
por: Sugahara, Shouta, et al.
Publicado: (2022) -
An Investigation into the Relationship among Psychiatric, Demographic and Socio-Economic Variables with Bayesian Network Modeling
por: Bilek, Gunal, et al.
Publicado: (2018) -
Epidemiologically and Socio-economically Optimal Policies via Bayesian Optimization
por: Chandak, Amit, et al.
Publicado: (2020) -
Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever
por: Raghavan, Ram K., et al.
Publicado: (2016)