Cargando…
An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach
Type IV secretion systems (T4SS) are multi-protein complexes in a number of bacterial pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conjugation and translocate DNA; however, approximately 13% function to secrete proteins, delivering effector proteins into the cy...
Autores principales: | Esna Ashari, Zhila, Dasgupta, Nairanjana, Brayton, Kelly A., Broschat, Shira L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942808/ https://www.ncbi.nlm.nih.gov/pubmed/29742157 http://dx.doi.org/10.1371/journal.pone.0197041 |
Ejemplares similares
-
Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila
por: Esna Ashari, Zhila, et al.
Publicado: (2019) -
Prediction of T4SS Effector Proteins for Anaplasma phagocytophilum Using OPT4e, A New Software Tool
por: Esna Ashari, Zhila, et al.
Publicado: (2019) -
Identification of Anaplasma marginale Type IV Secretion System Effector Proteins
por: Lockwood, Svetlana, et al.
Publicado: (2011) -
Prediction of bacterial type IV secreted effectors by C-terminal features
por: Wang, Yejun, et al.
Publicado: (2014) -
Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens
por: Lockwood, Svetlana, et al.
Publicado: (2016)