Cargando…

An early Cambrian greenhouse climate

The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures—a key component of the early Cambrian marine environment—remain unconstrained, in part because of a substantial time gap in the stable oxygen isoto...

Descripción completa

Detalles Bibliográficos
Autores principales: Hearing, Thomas W., Harvey, Thomas H. P., Williams, Mark, Leng, Melanie J., Lamb, Angela L., Wilby, Philip R., Gabbott, Sarah E., Pohl, Alexandre, Donnadieu, Yannick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942912/
https://www.ncbi.nlm.nih.gov/pubmed/29750198
http://dx.doi.org/10.1126/sciadv.aar5690
Descripción
Sumario:The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures—a key component of the early Cambrian marine environment—remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δ(18)O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust δ(18)O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification.