Cargando…

Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration

Nematode EAK-7 (enhancer-of-akt-1-7) regulates dauer formation and controls life span; however, the function of the human ortholog mammalian EAK-7 (mEAK-7) is unknown. We report that mEAK-7 activates an alternative mechanistic/mammalian target of rapamycin (mTOR) signaling pathway in human cells, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Joe Truong, Ray, Connor, Fox, Alexandra Lucienne, Mendonça, Daniela Baccelli, Kim, Jin Koo, Krebsbach, Paul H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942914/
https://www.ncbi.nlm.nih.gov/pubmed/29750193
http://dx.doi.org/10.1126/sciadv.aao5838
Descripción
Sumario:Nematode EAK-7 (enhancer-of-akt-1-7) regulates dauer formation and controls life span; however, the function of the human ortholog mammalian EAK-7 (mEAK-7) is unknown. We report that mEAK-7 activates an alternative mechanistic/mammalian target of rapamycin (mTOR) signaling pathway in human cells, in which mEAK-7 interacts with mTOR at the lysosome to facilitate S6K2 activation and 4E-BP1 repression. Despite interacting with mTOR and mammalian lethal with SEC13 protein 8 (mLST8), mEAK-7 does not interact with other mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2) components; however, it is essential for mTOR signaling at the lysosome. This phenomenon is distinguished by S6 and 4E-BP1 activity in response to nutrient stimulation. Conventional S6K1 phosphorylation is uncoupled from S6 phosphorylation in response to mEAK-7 knockdown. mEAK-7 recruits mTOR to the lysosome, a crucial compartment for mTOR activation. Loss of mEAK-7 results in a marked decrease in lysosomal localization of mTOR, whereas overexpression of mEAK-7 results in enhanced lysosomal localization of mTOR. Deletion of the carboxyl terminus of mEAK-7 significantly decreases mTOR interaction. mEAK-7 knockdown decreases cell proliferation and migration, whereas overexpression of mEAK-7 enhances these cellular effects. Constitutively activated S6K rescues mTOR signaling in mEAK-7–knocked down cells. Thus, mEAK-7 activates an alternative mTOR signaling pathway through S6K2 and 4E-BP1 to regulate cell proliferation and migration.