Cargando…

Mitochondrial Complex I activity signals antioxidant response through ERK5

Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We s...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Abrar Ul Haq, Allende-Vega, Nerea, Gitenay, Delphine, Garaude, Johan, Vo, Dang-Nghiem, Belkhala, Sana, Gerbal-Chaloin, Sabine, Gondeau, Claire, Daujat-Chavanieu, Martine, Delettre, Cécile, Orecchioni, Stefania, Talarico, Giovanna, Bertolini, Francesco, Anel, Alberto, Cuezva, José M., Enriquez, Jose A., Cartron, Guillaume, Lecellier, Charles-Henri, Hernandez, Javier, Villalba, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943249/
https://www.ncbi.nlm.nih.gov/pubmed/29743487
http://dx.doi.org/10.1038/s41598-018-23884-4
_version_ 1783321584072654848
author Khan, Abrar Ul Haq
Allende-Vega, Nerea
Gitenay, Delphine
Garaude, Johan
Vo, Dang-Nghiem
Belkhala, Sana
Gerbal-Chaloin, Sabine
Gondeau, Claire
Daujat-Chavanieu, Martine
Delettre, Cécile
Orecchioni, Stefania
Talarico, Giovanna
Bertolini, Francesco
Anel, Alberto
Cuezva, José M.
Enriquez, Jose A.
Cartron, Guillaume
Lecellier, Charles-Henri
Hernandez, Javier
Villalba, Martin
author_facet Khan, Abrar Ul Haq
Allende-Vega, Nerea
Gitenay, Delphine
Garaude, Johan
Vo, Dang-Nghiem
Belkhala, Sana
Gerbal-Chaloin, Sabine
Gondeau, Claire
Daujat-Chavanieu, Martine
Delettre, Cécile
Orecchioni, Stefania
Talarico, Giovanna
Bertolini, Francesco
Anel, Alberto
Cuezva, José M.
Enriquez, Jose A.
Cartron, Guillaume
Lecellier, Charles-Henri
Hernandez, Javier
Villalba, Martin
author_sort Khan, Abrar Ul Haq
collection PubMed
description Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.
format Online
Article
Text
id pubmed-5943249
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59432492018-05-14 Mitochondrial Complex I activity signals antioxidant response through ERK5 Khan, Abrar Ul Haq Allende-Vega, Nerea Gitenay, Delphine Garaude, Johan Vo, Dang-Nghiem Belkhala, Sana Gerbal-Chaloin, Sabine Gondeau, Claire Daujat-Chavanieu, Martine Delettre, Cécile Orecchioni, Stefania Talarico, Giovanna Bertolini, Francesco Anel, Alberto Cuezva, José M. Enriquez, Jose A. Cartron, Guillaume Lecellier, Charles-Henri Hernandez, Javier Villalba, Martin Sci Rep Article Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS. Nature Publishing Group UK 2018-05-09 /pmc/articles/PMC5943249/ /pubmed/29743487 http://dx.doi.org/10.1038/s41598-018-23884-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Khan, Abrar Ul Haq
Allende-Vega, Nerea
Gitenay, Delphine
Garaude, Johan
Vo, Dang-Nghiem
Belkhala, Sana
Gerbal-Chaloin, Sabine
Gondeau, Claire
Daujat-Chavanieu, Martine
Delettre, Cécile
Orecchioni, Stefania
Talarico, Giovanna
Bertolini, Francesco
Anel, Alberto
Cuezva, José M.
Enriquez, Jose A.
Cartron, Guillaume
Lecellier, Charles-Henri
Hernandez, Javier
Villalba, Martin
Mitochondrial Complex I activity signals antioxidant response through ERK5
title Mitochondrial Complex I activity signals antioxidant response through ERK5
title_full Mitochondrial Complex I activity signals antioxidant response through ERK5
title_fullStr Mitochondrial Complex I activity signals antioxidant response through ERK5
title_full_unstemmed Mitochondrial Complex I activity signals antioxidant response through ERK5
title_short Mitochondrial Complex I activity signals antioxidant response through ERK5
title_sort mitochondrial complex i activity signals antioxidant response through erk5
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943249/
https://www.ncbi.nlm.nih.gov/pubmed/29743487
http://dx.doi.org/10.1038/s41598-018-23884-4
work_keys_str_mv AT khanabrarulhaq mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT allendeveganerea mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT gitenaydelphine mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT garaudejohan mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT vodangnghiem mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT belkhalasana mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT gerbalchaloinsabine mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT gondeauclaire mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT daujatchavanieumartine mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT delettrececile mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT orecchionistefania mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT talaricogiovanna mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT bertolinifrancesco mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT anelalberto mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT cuezvajosem mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT enriquezjosea mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT cartronguillaume mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT lecelliercharleshenri mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT hernandezjavier mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT villalbamartin mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5