Cargando…
A machine learning model with human cognitive biases capable of learning from small and biased datasets
Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap b...
Autores principales: | Taniguchi, Hidetaka, Sato, Hiroshi, Shirakawa, Tomohiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943317/ https://www.ncbi.nlm.nih.gov/pubmed/29743630 http://dx.doi.org/10.1038/s41598-018-25679-z |
Ejemplares similares
-
Racial underrepresentation in dermatological datasets leads to biased machine learning models and inequitable healthcare
por: Kleinberg, Giona, et al.
Publicado: (2022) -
Machine-learning media bias
por: D’Alonzo, Samantha, et al.
Publicado: (2022) -
Racial Equity in Healthcare Machine Learning: Illustrating Bias in Models With Minimal Bias Mitigation
por: Barton, Michael, et al.
Publicado: (2023) -
Mitigating bias in machine learning for medicine
por: Vokinger, Kerstin N., et al.
Publicado: (2021) -
Not all biases are bad: equitable and inequitable biases in machine learning and radiology
por: Pot, Mirjam, et al.
Publicado: (2021)