Cargando…

Three-dimensional hot electron photovoltaic device with vertically aligned TiO(2) nanotubes

Titanium dioxide (TiO(2)) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with p...

Descripción completa

Detalles Bibliográficos
Autores principales: Goddeti, Kalyan C., Lee, Changhwan, Lee, Young Keun, Park, Jeong Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943325/
https://www.ncbi.nlm.nih.gov/pubmed/29743488
http://dx.doi.org/10.1038/s41598-018-25335-6
Descripción
Sumario:Titanium dioxide (TiO(2)) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO(2) and Ag/TiO(2) nanodiode architectures composed of TiO(2) nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO(2) nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal–semiconductor interface area.