Cargando…

Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration’s “Global Drifter Program”, this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with...

Descripción completa

Detalles Bibliográficos
Autores principales: Gay-Balmaz, François, Holm, Darryl D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943459/
https://www.ncbi.nlm.nih.gov/pubmed/29769757
http://dx.doi.org/10.1007/s00332-017-9431-0
Descripción
Sumario:Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration’s “Global Drifter Program”, this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie–Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.