Cargando…
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration’s “Global Drifter Program”, this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with...
Autores principales: | Gay-Balmaz, François, Holm, Darryl D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943459/ https://www.ncbi.nlm.nih.gov/pubmed/29769757 http://dx.doi.org/10.1007/s00332-017-9431-0 |
Ejemplares similares
-
From Lagrangian Mechanics to Nonequilibrium Thermodynamics: A Variational Perspective
por: Gay-Balmaz, François, et al.
Publicado: (2018) -
Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics
por: Barbaresco, Frédéric, et al.
Publicado: (2020) -
Stochastic modelling in fluid dynamics: Itô versus Stratonovich
por: Holm, Darryl D.
Publicado: (2020) -
Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics
por: Cotter, C. J., et al.
Publicado: (2017) -
Variational principles for stochastic fluid dynamics
por: Holm, Darryl D.
Publicado: (2015)