Cargando…
A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa
In spite of short-day (SD) nature, rice (Oryza sativa) shares a conserved photoperiodic network for flowering control with long-day plants like Arabidopsis thaliana. Flowering or heading is an important agronomic trait in rice. NAC transcription factors (TFs) are well-conserved and one of the larges...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943572/ https://www.ncbi.nlm.nih.gov/pubmed/29774039 http://dx.doi.org/10.3389/fpls.2018.00555 |
_version_ | 1783321657375457280 |
---|---|
author | Guo, Siyi Dai, Shaojun Singh, Prashant K. Wang, Hongyan Wang, Yanan Tan, Jeanie L. H. Wee, Wanyi Ito, Toshiro |
author_facet | Guo, Siyi Dai, Shaojun Singh, Prashant K. Wang, Hongyan Wang, Yanan Tan, Jeanie L. H. Wee, Wanyi Ito, Toshiro |
author_sort | Guo, Siyi |
collection | PubMed |
description | In spite of short-day (SD) nature, rice (Oryza sativa) shares a conserved photoperiodic network for flowering control with long-day plants like Arabidopsis thaliana. Flowering or heading is an important agronomic trait in rice. NAC transcription factors (TFs) are well-conserved and one of the largest families of plant TFs. However, their function in flowering or heading time is not well-known yet. A preferential expression of a membrane-bound NAC-like TF OsNTL5 in developing leaves and panicles of rice indicated to us its putative role in flowering. To examine its function, three independent constructs was generated, one with a deletion in the C terminus membrane-spanning domain (OsNTL5∆C), OsNTL5∆C fused with the SRDX transcriptional repressor motif and OsNTL5∆C used with the VP16 activation domain under the Ubiquitin promoter to produce the overexpressing lines OsNTL5∆C, OsNTL5∆C-SRDX, and OsNTL5∆C-VP, respectively in rice. The OsNTL5∆C-VP line showed an early-flowering phenotype. In contrast to this, the plants with OsNTL5∆C and OsNTL5∆C-SRDX showed a very strong late-flowering phenotype, suggesting that OsNTL5 suppresses flowering as a transcriptional repressor. The protein subcellular localization assay suggested that N-terminal part of the OsNTL5 is localized to the nucleus after the protein is cleaved from its membrane-spanning domain at the C-terminal end and functions as a TF. Expression of flowering genes responsible for day length signals such as Early Heading Date 1 (Ehd1), Heading Date 3a (Hd3a), and Rice Flowering Locus T1 (RFT1) was significantly changed in the overexpression lines of OsNTL5∆C-VP, OsNTL5∆C, and OsNTL5∆C-SRDX as analyzed by Quantitative Real-time PCR. ChIP-qPCR and rice protoplasts assays indicate that OsNTL5 directly binds to the promoter of Ehd1 and negatively regulates the expression of Ehd1, which shows antagonistic photoperiodic expression patterns of OsNTL5 in a 24-h SD cycle. Hence in conclusion, the NAC-like TF OsNTL5 functions as a transcriptional repressor to suppress flowering in rice as an upstream factor of Ehd1. |
format | Online Article Text |
id | pubmed-5943572 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59435722018-05-17 A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa Guo, Siyi Dai, Shaojun Singh, Prashant K. Wang, Hongyan Wang, Yanan Tan, Jeanie L. H. Wee, Wanyi Ito, Toshiro Front Plant Sci Plant Science In spite of short-day (SD) nature, rice (Oryza sativa) shares a conserved photoperiodic network for flowering control with long-day plants like Arabidopsis thaliana. Flowering or heading is an important agronomic trait in rice. NAC transcription factors (TFs) are well-conserved and one of the largest families of plant TFs. However, their function in flowering or heading time is not well-known yet. A preferential expression of a membrane-bound NAC-like TF OsNTL5 in developing leaves and panicles of rice indicated to us its putative role in flowering. To examine its function, three independent constructs was generated, one with a deletion in the C terminus membrane-spanning domain (OsNTL5∆C), OsNTL5∆C fused with the SRDX transcriptional repressor motif and OsNTL5∆C used with the VP16 activation domain under the Ubiquitin promoter to produce the overexpressing lines OsNTL5∆C, OsNTL5∆C-SRDX, and OsNTL5∆C-VP, respectively in rice. The OsNTL5∆C-VP line showed an early-flowering phenotype. In contrast to this, the plants with OsNTL5∆C and OsNTL5∆C-SRDX showed a very strong late-flowering phenotype, suggesting that OsNTL5 suppresses flowering as a transcriptional repressor. The protein subcellular localization assay suggested that N-terminal part of the OsNTL5 is localized to the nucleus after the protein is cleaved from its membrane-spanning domain at the C-terminal end and functions as a TF. Expression of flowering genes responsible for day length signals such as Early Heading Date 1 (Ehd1), Heading Date 3a (Hd3a), and Rice Flowering Locus T1 (RFT1) was significantly changed in the overexpression lines of OsNTL5∆C-VP, OsNTL5∆C, and OsNTL5∆C-SRDX as analyzed by Quantitative Real-time PCR. ChIP-qPCR and rice protoplasts assays indicate that OsNTL5 directly binds to the promoter of Ehd1 and negatively regulates the expression of Ehd1, which shows antagonistic photoperiodic expression patterns of OsNTL5 in a 24-h SD cycle. Hence in conclusion, the NAC-like TF OsNTL5 functions as a transcriptional repressor to suppress flowering in rice as an upstream factor of Ehd1. Frontiers Media S.A. 2018-05-03 /pmc/articles/PMC5943572/ /pubmed/29774039 http://dx.doi.org/10.3389/fpls.2018.00555 Text en Copyright © 2018 Guo, Dai, Singh, Wang, Wang, Tan, Wee and Ito. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Guo, Siyi Dai, Shaojun Singh, Prashant K. Wang, Hongyan Wang, Yanan Tan, Jeanie L. H. Wee, Wanyi Ito, Toshiro A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa |
title | A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa |
title_full | A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa |
title_fullStr | A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa |
title_full_unstemmed | A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa |
title_short | A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa |
title_sort | membrane-bound nac-like transcription factor osntl5 represses the flowering in oryza sativa |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943572/ https://www.ncbi.nlm.nih.gov/pubmed/29774039 http://dx.doi.org/10.3389/fpls.2018.00555 |
work_keys_str_mv | AT guosiyi amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT daishaojun amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT singhprashantk amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT wanghongyan amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT wangyanan amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT tanjeanielh amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT weewanyi amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT itotoshiro amembraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT guosiyi membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT daishaojun membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT singhprashantk membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT wanghongyan membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT wangyanan membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT tanjeanielh membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT weewanyi membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa AT itotoshiro membraneboundnacliketranscriptionfactorosntl5repressesthefloweringinoryzasativa |