Cargando…

A novel potential primary method for quantification of enantiomers by high performance liquid chromatography-circular dichroism

Primary methods play an important role in metrology. They can be used for the value assignment of certified reference materials, enabling the accuracy and comparability of the measurement. A novel potential primary method for enantiomer quantitation based on high-performance liquid chromatography-ci...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yi, Wu, Liqing, Yang, Bin, Jin, Youxun, Zheng, Kangle, He, Zhangjing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943587/
https://www.ncbi.nlm.nih.gov/pubmed/29743524
http://dx.doi.org/10.1038/s41598-018-25682-4
Descripción
Sumario:Primary methods play an important role in metrology. They can be used for the value assignment of certified reference materials, enabling the accuracy and comparability of the measurement. A novel potential primary method for enantiomer quantitation based on high-performance liquid chromatography-circular dichroism is described using L-phenylalanine as an example. The optimal quantitation range of L-Phe was from 0.1 mg/g to 1.2 mg/g, where both the relative bias and method variance were lower than 1%. The LOD and LOQ were 4 μg/g and 30 μg/g, respectively. The proposed method was also applied to the determination of the mass fraction of pure porcine insulin in solid. The average mass fraction obtained was 0.922 g/g with a RSD of 1.5%, and the associated relative uncertainty is 3.8% (k = 2), which agreed well with that obtained from the traditional isotope dilution mass spectrometry method. The LOD and LOQ for insulin quantitation were found to be 0.12 mg/g and 0.44 mg/g, respectively. The proposed method can be entirely described and understood by equations and a complete uncertainty statement can be defined in SI units.Therefore, it may be a potential primary method useful for the quantification of chiral compounds and proteins, and a supplementary method to the traditional isotope dilution mass spectrometry approach.