Cargando…
Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics
Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that...
Autores principales: | Lin, Xiaohui, Li, Chao, Zhang, Yanhui, Su, Benzhe, Fan, Meng, Wei, Hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943966/ https://www.ncbi.nlm.nih.gov/pubmed/29278382 http://dx.doi.org/10.3390/molecules23010052 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
por: Ding, Yuanyuan, et al.
Publicado: (2006) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018) -
Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE
por: Chen, Qi, et al.
Publicado: (2018) -
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
por: Liang, Yanchun, et al.
Publicado: (2011)