Cargando…
Residential scene classification for gridded population sampling in developing countries using deep convolutional neural networks on satellite imagery
BACKGROUND: Conducting surveys in low- and middle-income countries is often challenging because many areas lack a complete sampling frame, have outdated census information, or have limited data available for designing and selecting a representative sample. Geosampling is a probability-based, gridded...
Autores principales: | Chew, Robert F., Amer, Safaa, Jones, Kasey, Unangst, Jennifer, Cajka, James, Allpress, Justine, Bruhn, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944062/ https://www.ncbi.nlm.nih.gov/pubmed/29743081 http://dx.doi.org/10.1186/s12942-018-0132-1 |
Ejemplares similares
-
The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment
por: Méndez-Lorenzo, P, et al.
Publicado: (2007) -
Use of satellite imagery in constructing a household GIS database for health studies in Karachi, Pakistan
por: Ali, Mohammad, et al.
Publicado: (2004) -
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface
por: Luo, Jing, et al.
Publicado: (2023) -
A GIS-based method for household recruitment in a prospective pesticide exposure study
por: Allpress, Justine LE, et al.
Publicado: (2008) -
Identifying patterns in urban housing density in developing countries using convolutional networks and satellite imagery
por: Sanya, Rahman, et al.
Publicado: (2020)