Cargando…
Using Statistical and Machine Learning Methods to Evaluate the Prognostic Accuracy of SIRS and qSOFA
OBJECTIVES: The objective of this study was to compare the performance of two popularly used early sepsis diagnostic criteria, systemic inflammatory response syndrome (SIRS) and quick Sepsis-related Organ Failure Assessment (qSOFA), using statistical and machine learning approaches. METHODS: This re...
Autores principales: | Gupta, Akash, Liu, Tieming, Shepherd, Scott, Paiva, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944188/ https://www.ncbi.nlm.nih.gov/pubmed/29770247 http://dx.doi.org/10.4258/hir.2018.24.2.139 |
Ejemplares similares
-
Correction: Using Statistical and Machine Learning Methods to Evaluate the Prognostic Accuracy of SIRS and qSOFA
por: Gupta, Akash, et al.
Publicado: (2018) -
Prognostic Accuracy of SOFA, qSOFA, and SIRS for Mortality Among Emergency Department Patients with Infections
por: Abdullah, S M Osama Bin, et al.
Publicado: (2021) -
Prognostic accuracy of SOFA, qSOFA and SIRS criteria in hematological cancer patients: a retrospective multicenter study
por: Probst, Lucie, et al.
Publicado: (2019) -
qSOFA does not replace SIRS in the definition of sepsis
por: Vincent, Jean-Louis, et al.
Publicado: (2016) -
Sepsis Prediction Model for Determining Sepsis vs SIRS, qSOFA, and SOFA
por: Schertz, Adam R., et al.
Publicado: (2023)