Cargando…

Characterization of Transcription Termination-Associated RNAs: New Insights into their Biogenesis, Tailing, and Expression in Primary Tumors

Next-generation sequencing has uncovered novel classes of small RNAs (sRNAs) in eukaryotes, in addition to the well-known miRNAs, siRNAs, and piRNAs. In particular, sRNA species arise from transcription start sites (TSSs) and the transcription termination sites (TTSs) of genes. However, a detailed c...

Descripción completa

Detalles Bibliográficos
Autores principales: Laudadio, Ilaria, Formichetti, Sara, Gioiosa, Silvia, Klironomos, Filippos, Rajewsky, Nikolaus, Macino, Giuseppe, Carissimi, Claudia, Fulci, Valerio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944193/
https://www.ncbi.nlm.nih.gov/pubmed/29854718
http://dx.doi.org/10.1155/2018/1243858
Descripción
Sumario:Next-generation sequencing has uncovered novel classes of small RNAs (sRNAs) in eukaryotes, in addition to the well-known miRNAs, siRNAs, and piRNAs. In particular, sRNA species arise from transcription start sites (TSSs) and the transcription termination sites (TTSs) of genes. However, a detailed characterization of these new classes of sRNAs is still lacking. Here, we present a comprehensive study of sRNAs derived from TTSs of expressed genes (TTSa-RNAs) in human cell lines and primary tissues. Taking advantage of sRNA-sequencing, we show that TTSa-RNAs are present in the nuclei of human cells, are loaded onto both AGO1 and AGO2, and their biogenesis does not require DICER and AGO2 endonucleolytic activity. TTSa-RNAs display a strong bias against a G residue in the first position at 5′ end, a known feature of AGO-bound sRNAs, and a peculiar oligoA tail at 3′ end. AGO-bound TTSa-RNAs derive from genes involved in cell cycle progression regulation and DNA integrity checkpoints. Finally, we provide evidence that TTSa-RNAs can be detected by sRNA-Seq in primary human tissue, and their expression increases in tumor samples as compared to nontumor tissues, suggesting that in the future, TTSa-RNAs might be explored as biomarker for diagnosis or prognosis of human malignancies.