Cargando…
Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent
BACKGROUND: The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with (201)Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast ag...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944205/ https://www.ncbi.nlm.nih.gov/pubmed/29853803 http://dx.doi.org/10.1155/2018/2023604 |
_version_ | 1783321785520881664 |
---|---|
author | Szigeti, Krisztián Hegedűs, Nikolett Rácz, Kitti Horváth, Ildikó Veres, Dániel S. Szöllősi, Dávid Futó, Ildikó Módos, Károly Bozó, Tamás Karlinger, Kinga Kovács, Noémi Varga, Zoltán Babos, Magor Budán, Ferenc Padmanabhan, Parasuraman Gulyás, Balázs Máthé, Domokos |
author_facet | Szigeti, Krisztián Hegedűs, Nikolett Rácz, Kitti Horváth, Ildikó Veres, Dániel S. Szöllősi, Dávid Futó, Ildikó Módos, Károly Bozó, Tamás Karlinger, Kinga Kovács, Noémi Varga, Zoltán Babos, Magor Budán, Ferenc Padmanabhan, Parasuraman Gulyás, Balázs Máthé, Domokos |
author_sort | Szigeti, Krisztián |
collection | PubMed |
description | BACKGROUND: The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with (201)Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well. METHODS: The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs) (iron(II);iron(III);octadecacyanide) doped with (201)Tl isotope were characterized with atomic force microscopy, dynamic light scattering, and zeta potential measurement. PBNP biodistribution was determined by using SPECT and MRI following intravenous administration into C57BL6 mice. Activity concentrations (MBq/cm(3)) were calculated from the SPECT scans for each dedicated volume of interest (VOI) of liver, kidneys, salivary glands, heart, lungs, and brain. RESULTS: PBNP accumulation peaked at 2 hours after injection predominantly in the kidneys and the liver followed by a gradual decrease in activity in later time points. CONCLUSION: We synthetized, characterized, and radiolabeled a Prussian blue-based nanoparticle platform for contrast material applications. Its in vivo radiochemical stability and biodistribution open up the way for further diagnostic applications. |
format | Online Article Text |
id | pubmed-5944205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-59442052018-05-31 Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent Szigeti, Krisztián Hegedűs, Nikolett Rácz, Kitti Horváth, Ildikó Veres, Dániel S. Szöllősi, Dávid Futó, Ildikó Módos, Károly Bozó, Tamás Karlinger, Kinga Kovács, Noémi Varga, Zoltán Babos, Magor Budán, Ferenc Padmanabhan, Parasuraman Gulyás, Balázs Máthé, Domokos Contrast Media Mol Imaging Research Article BACKGROUND: The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with (201)Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well. METHODS: The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs) (iron(II);iron(III);octadecacyanide) doped with (201)Tl isotope were characterized with atomic force microscopy, dynamic light scattering, and zeta potential measurement. PBNP biodistribution was determined by using SPECT and MRI following intravenous administration into C57BL6 mice. Activity concentrations (MBq/cm(3)) were calculated from the SPECT scans for each dedicated volume of interest (VOI) of liver, kidneys, salivary glands, heart, lungs, and brain. RESULTS: PBNP accumulation peaked at 2 hours after injection predominantly in the kidneys and the liver followed by a gradual decrease in activity in later time points. CONCLUSION: We synthetized, characterized, and radiolabeled a Prussian blue-based nanoparticle platform for contrast material applications. Its in vivo radiochemical stability and biodistribution open up the way for further diagnostic applications. Hindawi 2018-04-26 /pmc/articles/PMC5944205/ /pubmed/29853803 http://dx.doi.org/10.1155/2018/2023604 Text en Copyright © 2018 Krisztián Szigeti et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Szigeti, Krisztián Hegedűs, Nikolett Rácz, Kitti Horváth, Ildikó Veres, Dániel S. Szöllősi, Dávid Futó, Ildikó Módos, Károly Bozó, Tamás Karlinger, Kinga Kovács, Noémi Varga, Zoltán Babos, Magor Budán, Ferenc Padmanabhan, Parasuraman Gulyás, Balázs Máthé, Domokos Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent |
title | Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent |
title_full | Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent |
title_fullStr | Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent |
title_full_unstemmed | Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent |
title_short | Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent |
title_sort | thallium labeled citrate-coated prussian blue nanoparticles as potential imaging agent |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944205/ https://www.ncbi.nlm.nih.gov/pubmed/29853803 http://dx.doi.org/10.1155/2018/2023604 |
work_keys_str_mv | AT szigetikrisztian thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT hegedusnikolett thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT raczkitti thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT horvathildiko thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT veresdaniels thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT szollosidavid thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT futoildiko thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT modoskaroly thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT bozotamas thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT karlingerkinga thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT kovacsnoemi thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT vargazoltan thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT babosmagor thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT budanferenc thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT padmanabhanparasuraman thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT gulyasbalazs thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent AT mathedomokos thalliumlabeledcitratecoatedprussianbluenanoparticlesaspotentialimagingagent |