Cargando…
Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm
PURPOSE: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). METHO...
Autores principales: | Lee, Jae-Hong, Kim, Do-hyung, Jeong, Seong-Nyum, Choi, Seong-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Periodontology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944222/ https://www.ncbi.nlm.nih.gov/pubmed/29770240 http://dx.doi.org/10.5051/jpis.2018.48.2.114 |
Ejemplares similares
-
Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study
por: Lee, Jae-Hong, et al.
Publicado: (2020) -
Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks
por: Thanathornwong, Bhornsawan, et al.
Publicado: (2020) -
Charlson comorbidity index as a predictor of periodontal disease in elderly participants
por: Lee, Jae-Hong, et al.
Publicado: (2018) -
Chronic Periodontal Disease increases risk for Prostate Cancer in Elderly individuals in South Korea: a Retrospective Nationwide Population-based Cohort Study
por: Kim, Do-hyung, et al.
Publicado: (2020) -
Severe periodontitis with tooth loss as a modifiable risk factor for the development of Alzheimer, vascular, and mixed dementia: National Health Insurance Service-National Health Screening Retrospective Cohort 2002–2015
por: Kim, Do-Hyung, et al.
Publicado: (2020)