Cargando…

Revealing Synergistic Mechanism of Multiple Components in Gandi Capsule for Diabetic Nephropathy Therapeutics by Network Pharmacology

Gandi capsule, a traditional Chinese herbal medicinal formulation that consists of eight herbs, is used as a clinical therapy for diabetic nephropathy. To clarify the potential synergistic mechanism, this study adopted a network pharmacology strategy to screen the action targets that corresponded to...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jian, Zhang, Qiqiang, Chen, Xiaofei, Liu, Yan, Xue, Jiyang, Dahan, Arik, Zhang, Hai, Chai, Yifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944259/
https://www.ncbi.nlm.nih.gov/pubmed/29853965
http://dx.doi.org/10.1155/2018/6503126
Descripción
Sumario:Gandi capsule, a traditional Chinese herbal medicinal formulation that consists of eight herbs, is used as a clinical therapy for diabetic nephropathy. To clarify the potential synergistic mechanism, this study adopted a network pharmacology strategy to screen the action targets that corresponded to the active components in the Gandi capsule. We first constructed a compound database of 315 components in the Gandi capsule and a target database of diabetic nephropathy, which included 155 target proteins. Six representative compounds were selected to dock with 99 proteins found in the UniProtKB database with their PDB code, and interaction networks between the active ingredients of the Gandi capsule and their targets were mapped out. Results revealed 47 proteins with a high affinity with at least one compound molecule in the Gandi capsule. The main action pathways closely related to the development of diabetic nephropathy were the TGF-β1, AMPK, insulin, TNF-α, and lipid metabolism pathways as per network pharmacology analysis. In the interaction network, ACC1, SOD2, COX2, PKC-B, IR, and ROCK1 proteins had the most frequent interactions with the six compounds. We performed visual molecular docking in silico and experimentally confirmed competitive component-protein binding by SPR and an enzyme activity test, which highlighted the relationships of wogonin to COX2 and SOD2, astragaloside IV to ACC1, and morroniside to ACC1. We concluded that the potential synergistic mechanism of the Gandi capsule resulted from high affinities with multiple proteins and intervention in multiple pathways in combination therapy of diabetic nephropathy.