Cargando…
Nuclear IHC enumeration: A digital phantom to evaluate the performance of automated algorithms in digital pathology
Automatic and accurate detection of positive and negative nuclei from images of immunostained tissue biopsies is critical to the success of digital pathology. The evaluation of most nuclei detection algorithms relies on manually generated ground truth prepared by pathologists, which is unfortunately...
Autores principales: | Niazi, Muhammad Khalid Khan, Abas, Fazly Salleh, Senaras, Caglar, Pennell, Michael, Sahiner, Berkman, Chen, Weijie, Opfer, John, Hasserjian, Robert, Louissaint, Abner, Shana'ah, Arwa, Lozanski, Gerard, Gurcan, Metin N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944932/ https://www.ncbi.nlm.nih.gov/pubmed/29746503 http://dx.doi.org/10.1371/journal.pone.0196547 |
Ejemplares similares
-
Optimized generation of high-resolution phantom images using cGAN: Application to quantification of Ki67 breast cancer images
por: Senaras, Caglar, et al.
Publicado: (2018) -
DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning
por: Senaras, Caglar, et al.
Publicado: (2018) -
Inter-reader variability in follicular lymphoma grading: Conventional and digital reading
por: Lozanski, Gerard, et al.
Publicado: (2013) -
Classification of follicular lymphoma: the effect of computer aid on pathologists grading
por: Fauzi, Mohammad Faizal Ahmad, et al.
Publicado: (2015) -
Relationship between the Ki67 index and its area based approximation in breast cancer
por: Niazi, Muhammad Khalid Khan, et al.
Publicado: (2018)