Cargando…
Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering
Scanning flow cytometry (SFCM) is characterized by the measurement of time-resolved pulses of fluorescence and scattering, enabling the high-throughput quantification of phytoplankton morphology and pigmentation. Quantifying variation at the single cell and colony level improves our ability to under...
Autores principales: | Thomas, Mridul K., Fontana, Simone, Reyes, Marta, Pomati, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945019/ https://www.ncbi.nlm.nih.gov/pubmed/29746500 http://dx.doi.org/10.1371/journal.pone.0196225 |
Ejemplares similares
-
Opportunities and challenges in deriving phytoplankton diversity measures from individual trait-based data obtained by scanning flow-cytometry
por: Fontana, Simone, et al.
Publicado: (2014) -
Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya)
por: Sitoki, L., et al.
Publicado: (2012) -
Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom
por: Pomati, Francesco, et al.
Publicado: (2013) -
Misty Mountain clustering: application to fast unsupervised flow cytometry gating
por: Sugár, István P, et al.
Publicado: (2010) -
Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry
por: Zhang, Zunming, et al.
Publicado: (2023)