Cargando…
The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis
Morphological transformations in primitive organisms have long been observed; however, its biomechanical roles are largely unexplored. In this study, we investigate the structural advantages of dimorphism in Arthrospira platensis, a filamentous multicellular cyanobacterium. We report that helical tr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945045/ https://www.ncbi.nlm.nih.gov/pubmed/29746494 http://dx.doi.org/10.1371/journal.pone.0196383 |
_version_ | 1783321933579812864 |
---|---|
author | Chaiyasitdhi, Atitheb Miphonpanyatawichok, Wirat Riehle, Mathis Oliver Phatthanakun, Rungrueang Surareungchai, Werasak Kundhikanjana, Worasom Kuntanawat, Panwong |
author_facet | Chaiyasitdhi, Atitheb Miphonpanyatawichok, Wirat Riehle, Mathis Oliver Phatthanakun, Rungrueang Surareungchai, Werasak Kundhikanjana, Worasom Kuntanawat, Panwong |
author_sort | Chaiyasitdhi, Atitheb |
collection | PubMed |
description | Morphological transformations in primitive organisms have long been observed; however, its biomechanical roles are largely unexplored. In this study, we investigate the structural advantages of dimorphism in Arthrospira platensis, a filamentous multicellular cyanobacterium. We report that helical trichomes, the default shape, have a higher persistence length (L(p)), indicating a higher resistance to bending or a large value of flexural rigidity (k(f)), the product of the local cell stiffness (E) and the moment of inertia of the trichomes’ cross-section (I). Through Atomic Force Microscopy (AFM), we determined that the E of straight and helical trichomes were the same. In contrast, our computational model shows that I is greatly dependent on helical radii, implying that trichome morphology is the major contributor to k(f) variation. According to our estimation, increasing the helical radii alone can increase k(f) by 2 orders of magnitude. We also observe that straight trichomes have improved gliding ability, due to its structure and lower k(f). Our study shows that dimorphism provides mechanical adjustability to the organism and may allow it to thrive in different environmental conditions. The higher k(f) provides helical trichomes a better nutrient uptake through advection in aquatic environments. On the other hand, the lower k(f) improves the gliding ability of straight trichomes in aquatic environments, enabling it to chemotactically relocate to more favorable territories when it encounters certain environmental stresses. When more optimal conditions are encountered, straight trichomes can revert to their original helical form. Our study is one of the first to highlight the biomechanical role of an overall-shape transformation in cyanobacteria. |
format | Online Article Text |
id | pubmed-5945045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59450452018-05-25 The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis Chaiyasitdhi, Atitheb Miphonpanyatawichok, Wirat Riehle, Mathis Oliver Phatthanakun, Rungrueang Surareungchai, Werasak Kundhikanjana, Worasom Kuntanawat, Panwong PLoS One Research Article Morphological transformations in primitive organisms have long been observed; however, its biomechanical roles are largely unexplored. In this study, we investigate the structural advantages of dimorphism in Arthrospira platensis, a filamentous multicellular cyanobacterium. We report that helical trichomes, the default shape, have a higher persistence length (L(p)), indicating a higher resistance to bending or a large value of flexural rigidity (k(f)), the product of the local cell stiffness (E) and the moment of inertia of the trichomes’ cross-section (I). Through Atomic Force Microscopy (AFM), we determined that the E of straight and helical trichomes were the same. In contrast, our computational model shows that I is greatly dependent on helical radii, implying that trichome morphology is the major contributor to k(f) variation. According to our estimation, increasing the helical radii alone can increase k(f) by 2 orders of magnitude. We also observe that straight trichomes have improved gliding ability, due to its structure and lower k(f). Our study shows that dimorphism provides mechanical adjustability to the organism and may allow it to thrive in different environmental conditions. The higher k(f) provides helical trichomes a better nutrient uptake through advection in aquatic environments. On the other hand, the lower k(f) improves the gliding ability of straight trichomes in aquatic environments, enabling it to chemotactically relocate to more favorable territories when it encounters certain environmental stresses. When more optimal conditions are encountered, straight trichomes can revert to their original helical form. Our study is one of the first to highlight the biomechanical role of an overall-shape transformation in cyanobacteria. Public Library of Science 2018-05-10 /pmc/articles/PMC5945045/ /pubmed/29746494 http://dx.doi.org/10.1371/journal.pone.0196383 Text en © 2018 Chaiyasitdhi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chaiyasitdhi, Atitheb Miphonpanyatawichok, Wirat Riehle, Mathis Oliver Phatthanakun, Rungrueang Surareungchai, Werasak Kundhikanjana, Worasom Kuntanawat, Panwong The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis |
title | The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis |
title_full | The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis |
title_fullStr | The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis |
title_full_unstemmed | The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis |
title_short | The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis |
title_sort | biomechanical role of overall-shape transformation in a primitive multicellular organism: a case study of dimorphism in the filamentous cyanobacterium arthrospira platensis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945045/ https://www.ncbi.nlm.nih.gov/pubmed/29746494 http://dx.doi.org/10.1371/journal.pone.0196383 |
work_keys_str_mv | AT chaiyasitdhiatitheb thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT miphonpanyatawichokwirat thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT riehlemathisoliver thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT phatthanakunrungrueang thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT surareungchaiwerasak thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT kundhikanjanaworasom thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT kuntanawatpanwong thebiomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT chaiyasitdhiatitheb biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT miphonpanyatawichokwirat biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT riehlemathisoliver biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT phatthanakunrungrueang biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT surareungchaiwerasak biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT kundhikanjanaworasom biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis AT kuntanawatpanwong biomechanicalroleofoverallshapetransformationinaprimitivemulticellularorganismacasestudyofdimorphisminthefilamentouscyanobacteriumarthrospiraplatensis |