Cargando…
Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling
Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945566/ https://www.ncbi.nlm.nih.gov/pubmed/29748920 http://dx.doi.org/10.1186/s11671-018-2564-8 |
_version_ | 1783322015379226624 |
---|---|
author | Wu, Dong Yang, Liu Liu, Chang Xu, Zenghui Liu, Yumin Yu, Zhongyuan Yu, Li Chen, Lei Ma, Rui Ye, Han |
author_facet | Wu, Dong Yang, Liu Liu, Chang Xu, Zenghui Liu, Yumin Yu, Zhongyuan Yu, Li Chen, Lei Ma, Rui Ye, Han |
author_sort | Wu, Dong |
collection | PubMed |
description | Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(|E(loc)|/|E(0)| > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption. |
format | Online Article Text |
id | pubmed-5945566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-59455662018-05-14 Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling Wu, Dong Yang, Liu Liu, Chang Xu, Zenghui Liu, Yumin Yu, Zhongyuan Yu, Li Chen, Lei Ma, Rui Ye, Han Nanoscale Res Lett Nano Express Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(|E(loc)|/|E(0)| > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption. Springer US 2018-05-10 /pmc/articles/PMC5945566/ /pubmed/29748920 http://dx.doi.org/10.1186/s11671-018-2564-8 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Nano Express Wu, Dong Yang, Liu Liu, Chang Xu, Zenghui Liu, Yumin Yu, Zhongyuan Yu, Li Chen, Lei Ma, Rui Ye, Han Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling |
title | Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling |
title_full | Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling |
title_fullStr | Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling |
title_full_unstemmed | Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling |
title_short | Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling |
title_sort | optically active plasmonic metasurfaces based on the hybridization of in-plane coupling and out-of-plane coupling |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945566/ https://www.ncbi.nlm.nih.gov/pubmed/29748920 http://dx.doi.org/10.1186/s11671-018-2564-8 |
work_keys_str_mv | AT wudong opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT yangliu opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT liuchang opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT xuzenghui opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT liuyumin opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT yuzhongyuan opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT yuli opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT chenlei opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT marui opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling AT yehan opticallyactiveplasmonicmetasurfacesbasedonthehybridizationofinplanecouplingandoutofplanecoupling |