Cargando…

Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian

The present study is concerned with the following fractional p-Laplacian equation involving a critical Sobolev exponent of Kirchhoff type: [Formula: see text] where [Formula: see text] , [Formula: see text] and [Formula: see text] are constants, and [Formula: see text] is the fractional p-Laplacian...

Descripción completa

Detalles Bibliográficos
Autor principal: Shen, Liejun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945764/
https://www.ncbi.nlm.nih.gov/pubmed/29773928
http://dx.doi.org/10.1186/s13660-018-1708-9
Descripción
Sumario:The present study is concerned with the following fractional p-Laplacian equation involving a critical Sobolev exponent of Kirchhoff type: [Formula: see text] where [Formula: see text] , [Formula: see text] and [Formula: see text] are constants, and [Formula: see text] is the fractional p-Laplacian operator with [Formula: see text] and [Formula: see text] . For suitable [Formula: see text] , the above equation possesses at least two nontrivial solutions by variational method for any [Formula: see text] . Moreover, we regard [Formula: see text] and [Formula: see text] as parameters to obtain convergent properties of solutions for the given problem as [Formula: see text] and [Formula: see text] , respectively.