Cargando…
Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
The present study is concerned with the following fractional p-Laplacian equation involving a critical Sobolev exponent of Kirchhoff type: [Formula: see text] where [Formula: see text] , [Formula: see text] and [Formula: see text] are constants, and [Formula: see text] is the fractional p-Laplacian...
Autor principal: | Shen, Liejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945764/ https://www.ncbi.nlm.nih.gov/pubmed/29773928 http://dx.doi.org/10.1186/s13660-018-1708-9 |
Ejemplares similares
-
Multiplicity and asymptotic behavior of solutions for Kirchhoff type equations involving the Hardy–Sobolev exponent and singular nonlinearity
por: Shen, Liejun
Publicado: (2018) -
Solutions to the nonlinear Schrödinger systems involving the fractional Laplacian
por: Qu, Meng, et al.
Publicado: (2018) -
Solution of the Kirchhoff–Plateau Problem
por: Giusteri, Giulio G., et al.
Publicado: (2017) -
Existence of Multiple Solutions for a p-Kirchhoff Problem with Nonlinear Boundary Conditions
por: Xiu, Zonghu, et al.
Publicado: (2013) -
Least energy sign-changing solutions for a class of nonlocal Kirchhoff-type problems
por: Cheng, Bitao
Publicado: (2016)