Cargando…
A DFA-based bivariate regression model for estimating the dependence of PM2.5 among neighbouring cities
On the basis of detrended fluctuation analysis (DFA), we propose a new bivariate linear regression model. This new model provides estimators of multi-scale regression coefficients to measure the dependence between variables and corresponding variables of interest with multi-scales. Numerical tests a...
Autores principales: | Wang, Fang, Wang, Lin, Chen, Yuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945840/ https://www.ncbi.nlm.nih.gov/pubmed/29748597 http://dx.doi.org/10.1038/s41598-018-25822-w |
Ejemplares similares
-
Detecting PM2.5’s Correlations between Neighboring Cities Using a Time-Lagged Cross-Correlation Coefficient
por: Wang, Fang, et al.
Publicado: (2017) -
Spatial distribution characteristics of PM(2.5) and PM(10) in Xi’an City predicted by land use regression models
por: Han, Li, et al.
Publicado: (2020) -
PM(2.5) Concentration Estimation Based on Image Processing Schemes and Simple Linear Regression
por: Liaw, Jiun-Jian, et al.
Publicado: (2020) -
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
por: Zhang, Tianyu, et al.
Publicado: (2020) -
Exploring the convergence patterns of PM2.5 in Chinese cities
por: Wang, Yan, et al.
Publicado: (2022)